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Optical Recognition of Musical Notation:
A Survey of Current Work

Optical recognition of music—the machine acquisition of intelligent information
through the correct interpretation of an electronically scanned image—is widely viewed
as an important area of technical research. It is also an immensely difficult one. This
explains why it was not until this year that the first commercial program appeared.
Although research on OMR can be traced back to the work of David Prerau at M.I.T.
more than 20 years ago, a large number of research efforts have been launched and
nurtured over the past five years. Much of the literature they have generated is found
in publications on image processing. The groundswell of recent interest is affirmed by
the establishment in 1993 of two electronic discussions of optical recognition.! Some
practitioners claim that the craft of optical recognition stands approximately where
software for music notation stood ten years ago.

Vis-a-vis the additive process of composing musical notation, the general principle
employed in most systems for OMR is one of subtraction. Removal of selected graphical
elements up to the point where residual objects can be identified is the intermediate goal.
Objects that can be isolated are much more likely to be identified correctly than those that
cannot. More so than in music printing, the steps in the recognition process are
unpredictable in number and nature.

First CCARH Survey

Numerous projects in this field have been reported in Computing in Musicology since
1987 [a list of previous reports is given on pp. 117-8]. Believing that it was time to
introduce a systematic survey of the numerous and diverse efforts that are known to exist,
we distributed a survey concerned with general aims and accomplishments to 36 OMR
developers. One measure of the difficulty of the undertaking is that only six groups re-

' News about research related to optical recognition in general is circulated by Karl Tombre, INRIA Lorraine
/ CRIN-CNRS, Post: Batiment LORIA, BP 239, 54506 Vandoeuvre CEDEX, France, or 615 rue du jardin
botanique, BP 101, 54602 Villers CEDEX, France; tel.: +33 83/59.20.71; fax: +33 83/41.30.79; e-mail:
Karl.Tombre@loria.fr. Martin Roth [¢f. p. 145] maintains an electronic discussion [omr@ips.id.ethz.ch] of
recognition of musical notation.
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turned detailed reports on their current work. Some researchers reported briefly that they
did not feel that their work was far enough progressed to warrant an official report. A
few regarded some of the information sought as proprietary.

For our part, we discovered that constructing a survey for optical recognition is a
daunting task. Although some of our questions were intended to facilitate comparison,
we learned that it is difficult, and at the present time probably unwise, to make them.
The reasons why this is so are themselves instructive, particularly for potential users of
optical recognition software. They are indicated in the following pages.

Approaches and Problem Types: A General Introduction

There are myriad approaches to optical recognition. Each one is guided by a
different view of the most significant obstacles to recognition and the most efficient
available means of addressing general problems of optical recognition.

1. Conceptual Issues

An overriding problem of interpretation is that of distinguishing foreground from
background. We normally think of a musical score as a two-dimensional object, but it
is actually interpreted cognitively as one of three dimensions. The third dimension
consists of non-sounding cues to interpretation, such as staves and systems. For this
reason, many systems begin with the removal of staff lines, which form a complicating
visual background, in order better to reveal the foreground of notes, stems, and beams.

The adage that what is easy for human beings is difficult for machines is nowhere
more true than in optical recognition. White notes are harder for most systems to
identify than black notes because they contain very little visual matter. Contextual
information is problematic: a dot of prolongation and a dot of articulation (staccato)
cannot be distinguished by shape or size; they must be distinguished contextually. When
it comes to interpreting the images captured, recognition programs must do a lot of the
same bookkeeping required in music printing programs to interpret items correctly. Pitch
interpretation is dependent on the clef in use, duration may be dependent on metrical
signature, and so forth.

2. The Basic Process

The main steps in the process of music recognition are (a) capture of the image as
a bitmap, (b) editing of the image to facilitate correct interpretation, (c) conversion of
bitmap to a code (such as MIDI, DARMS, or SCORE) representing musical information,
and (d) translation of the code to an application producing sound or printed musical
notation.
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3. Factors Relating to the Work Environment

The competence of the result and the ease with which it is obtained can be influenced
by many factors—(1) the hardware, operating system, and software environment in use,
(2) the graphic quality of the material scanned, (3) the complexity of the music, (4) the
format to which conversion is sought, and (5) the efficiency of the applications program
used to complete the recreation of the music.

(1) For programs implemented on the PC, acquisition times on a 486 will be
significantly faster than those on a 386 but not necessarily the same from machine to
machine, on which hardware components and operating setups may vary. Machine
speeds have a significant effect on program performance. Programs implemented on
some Unix workstations may have some inherent advantages conferred by specific
resources for image capture and editing. The workstations themselves normally have
much larger screens and higher screen resolutions than PCs or Macs, traits that are
valuable in the editing of images.

(2) Many prototype programs of the past were designed to work only with single
parts on one staff. Most current programs concentrate on music for not-too-large
instrumental ensembles; many exclude keyboard music because of its often complex
textures. We know of no program that attempts to capture text underlay in vocal music.
Most do not attempt to capture other text elements, such as tempo indications. Users of
recognition software must expect to supplement the material captured automatically with
additional information if they wish to create performing materials.

(3) Intelligent scanning programs of the present time usually do not attempt to
replicate completely the image of the original. Instead they try to capture selected
attributes of musical information. Sound-out programs attempt to capture pitch and
duration. Depending on the repertory selected, print-out programs may need to capture
a significantly greater number of elements of information—slurs, stems, beams,
articulation marks, dynamics, and ornaments.

(4) The time required to correct scanning errors will depend not only on the level of
accuracy of the automatically acquired material but also on the nature and efficiency of
the applications program into which the material is read, not to mention the user’s facility
in using it. While support for notation output is inherently more demanding than that for
sound output, most programs intended to produce printed output from scanned material
support only a finite number of the additional elements—stems and beams, perhaps, but
not slurs. The number of attributes supported characteristically increases as the program
grows in overall competence.

(5) There are no uniform measures of efficiency in the evaluation of applications
programs. Some relevant issues are raised in the article "How Practical is Optical Music
Recognition as an Input Method?" (pp. 159-166).
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Problem Categories

Those involved in the development of programs for recognition of music tend to
make decisions about all of the above items at the outset of their work. They spend
much of their subsequent research time trying to address problems presented by the
graphical image itself. These can be grouped into three categories—visual surface
problems, object recognition problems, and problems of music representation.

1. Visual surface problems

Most visual surface problems result
from imperfections in the printing.
ﬁ_ Given that the optical acquisition of
works printed in recent decades is likely
to violate copyright, scanning researchers
'9" often select materials from the nineteenth
century for training materials. This is
the case with all of the illustrations in

this section, which come from the
—JB i\ Breitkopf und Hirtel edition of Mozart’s
N ’—J—}-———— Symphony in G Major, K. 114, pub-
——{ lished in 1879. The erratic typography
d shown in our enlargements is character-
istic of a great deal of printed music that
is legally available for scanning.
Figure 1. Surface imperfections: skewing and Some common imperfections are
ambiguous positioning (uppermost note). rotation of staves so that staff lines are
not exactly parallel with the edge of the
page, variability in staff line thickness, and incorrect positioning (Figure 1). However
trivial they may seem to the human eye, these irregularities can be quite debilitating to
recognition software, which can usually accept small variations but only within clearly
set limits. Respondents to our survey reported acceptance limits of skewed images
within the range of 5° to 10°. The image in Figure 1 is the only example shown here that
has not been rotationally corrected by at least 1°.
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Other problems of the visual
surface fall into two categories—
missing information and superfluous
information.  Staff lines and leger
lines that are not continuous (as in
Figure 2) as well as objects that are
incompletely drawn (e.g., the half
note in Figure 3) or incompletely
filled (e.g., notes on the downbeat in
Figure 4) are all familiar problems of
insufficiency in the visual image
itself. In all of these examples small
variations in notehead size and
placement relative to stems and staff
lines can also be detected.

77

Figure 2. Surface imperfections: note the broken
staff line at the top right and the variable width of
both staff- and barlines.

Figure 3. Insufficient information: the half note and
the natural sign both lack closure. Compare the
hypothetical white space in the half note with the actual
white space bordered by the stem, the notehead, and the
contingent flag in the tied octaves of Figure 4.

The problems caused by superfluous information, which cannot be filtered by
recognition software unless anticipated, are less likely to be evident to users. The most
common kind of superfluous information is dirt (Figure 5).
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Figure 4. Flawed information: the eighth
notes on the first beat are incompletely
filled. Note the variable distance between

the staccato dots and the notes to which
they pertain.

Figure 5. Superfluous
information: dirt.

Depending on where it occurs in relation to other objects, dirt can be misinterpreted
to be almost anything. If one were attempting to read the blob in Figure 5, one might
be tempted by its placement to consider it a dynamics mark of some kind.

Programs can also create superfluous information through the misrecognition of
objects. In one of the ensuing examples (5a on p. 132), dynamics markings were
interpreted as whole notes. Errors of this kind are common in the development stage,
since the effort to be selective about which musical attributes to capture provides scope
for a category of errors that would not exist if all elements could be reliably captured.

2. Object Recognition

Optical recognition software in general utilizes a wide range of diverse approaches.
One approach is to bound specified areas in a hypothetical box and make inferences from
box sizes and shapes. If one were always scanning material from the same typographical
source, such as a particular press that always worked with the same font and the same
size staves, one might attempt to make templates for the various objects and match
captured objects to the templates. Most situations are not so simple, and various methods
developed in artificial intelligence are employed.
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Problems of object recognition vary somewhat with the nature of the approach.
Some approaches are better suited to large features, such as slurs and beams, others to
small features, such as stems and flags. Reliable interpretation for replication of printed
material will obviously require equal competence in the treatment of both ranges. This
is the kind of success that remains elusive.

Problems that are common to most approaches include inconsistencies of size, shape,
and presentation as well as those of superimposition. In all of these categories some
confusing situations conform to the accepted grammar of musical notation and others
occur by accident.

A. INCONSISTENCIES OF SIZE

An intended inconsistency of size occurs in the case of a grace note. A program that
tries to identify objects by shape only might have trouble distinguishing a grace note or
a cue note from an ordinary note. It can be filtered out by its size, providing that the
surround area is not too noisy or too dirty. However, when one filters by size, then the
erratic nature of page composition can muddle the result. In older scores that are, from
a copyright perspective, appropriate for scanning, stem lengths and beam widths are
likely to be variable (Figures 6a and 6b).

b | J
i, ' f%’f

Figure 6a. Compare the stem lengths in _
this passage with those in Ex. 6b. Figure 6b. Compare the stem lengths
with those of Ex. 6a.

B. INCONSISTENCIES OF SHAPE AND PRESENTATION

Some intended instances of inconsistency in presentation would be the note centered
on the staff line vs. the note centered on the space. When multiple beams cross multiple
staff lines, many kinds of unpredictable shapes can result, especially since the angle of
tilt in the beams is variable and the overlay created will depend on the vertical placement
of the associated notes. This creates an unfortunate but accepted area of difficulty for
visual interpretation. However, when such objects as rests and fermatas are erratically
aligned in a score, a recognition program must search a relatively large area in order to
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locate and identify them. Clef signs, meter signatures, and quarter-note rests were
frequently cited as problems because of wide variations in graphic design.

C. CONTIGUITY AND SUPERIMPOSITION
y Even when the quality of the original
; f y material is superb, the contiguous placement
- ﬁ_‘ or Superimposition of objects presents
serious obstacles to recognition. Slurs are
4 + especially troublesome. A slur crossing a
stem (Figures 1, 6a, 6b) may be tolerated,
but a slur touching a note (Figure 7) or

crossing a dynamic marking creates apparent
objects that will not be found in a graphic

Figure 7. Superimposition: slurs touch
noteheads. Note also that the flag of the .
first eighth note crosses a leger line. lexicon.

3. Problems of Music Representation
A generation of researchers J
have explored the anomalies of 15

representing Western art music in ?
common music notation without

exhausting all the aberrations or

describing them systematically. {
It is not the task of optical ia
recognition research to do so, but  Figure 8. Issues in music representation: half notes
since recognition software pro- and quarter notes share common stems.

duces files for the reconstruction

of musical scores and sounds, it is inevitable that from time to time problems of musical
representation will need to be addressed. Global problems such as the realization of
grace notes and the separation of tracks in keyboard works may not interfere often if the
intended output is specifically for sound or for notation. Local problems are more likely
to be troublesome. In Figure 8 we show one—an instance in which multiple objects
(notes of diverse durations) share common parts (here stems) in an unlikely way.

Such examples interfere with a grammatical approach to object recognition, since in
its graphic presentation the underlying logic of notation is beset on every side with
exceptions of an unpredictable nature. Additionally, recognition programs may be
confused by objects not intended for capture. One developer cited guitar chords as an
example: they are hard to ignore because of parallel lines and black circles.
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4. Partial Solutions

Approaches to optical recognition have varied widely over the years. Early efforts
at text recognition often used template-matching. Since this depends on matching specific
fonts at exact sizes, its value is severely limited in handling typographically diverse
materials. Recognition by geometrical analysis of graphic features such as lines, angles,
orientations, and curvatures of scanned objects is based on algorithmic matching. This
approach overcomes the problems of exactness encountered in template-matching but
elicits new areas of confusion in attempting to distinguish, for example, between b’s and
h’s, I’'s and 1’s, or O’s and 0’s.

The optical scanning of music cannot build entirely on these approaches, because the
symbols used in musical notation are so much more numerous, their visual grammar so
much more complex, and their meanings sometimes determined by contextual clues, as
the previous figures have demonstrated. One technique is that of bounding groups of
objects, such as a series of eighth notes connected to a common beam, and defining the
contents hierarchically from most to least comprehensive. The demarcated area is called
a bounding box. Researches have explored foreground-background separation (i.e.,
removing the staff lines to expose the notes), background enhancement, tests of identity
by rotation and/or slanting of objects, and a host of other image-processing techniques.
In one enterprise, additional staff lines are hypothetically projected to assess the height
and depth of objects above and below the staff. In another, the staff grid is not inspected
along the whole of its horizontal length; instead the program sets the clef at the start of
each line and assumes that it does not change along the way. This has obvious pitfalls
for accuracy but saves processing time. Most enduring projects use a combination of
methods to attend to the diverse problems encountered.

Some projects reported in recent issues of Computing in Musicology include the
following:

® 1987: Bernard Mont-Reynaud, Stanford University; Unix environment.

® 1987, 1989, 1990, 1991: Nicholas Caster*, University of Surrey,
UK—programming on Unix workstations and PCs; output to SCORE
[notation program]. Now licensed to Coda Music Technology.

® 1987, 1990, 1991: Alastair Clarke, University of Wales, Cardiff,
UK—programming on PC.

® 1987, 1990: Waseda University, Tokyo—one aspect of the WABOT musical
robotics enterprise; limited number of symbols attempted; SMX [code] output

® 1990, 1991: William McGee*, Paul Merkley, University of Ottawa—
programming on PC; original focus on syntactically simple medieval music [but
subsequently broadened to common music notation]; output in DARMS [code] to
The Note Processor [notation program]



118 Computing in Musicology

® 1990: Dimitris Giannelos, ERATTO-CNRS, Paris—programming on
Macintosh; focus on Greek Orthodox music; output to Euterpe [notation

program]

® 1991: Ichiro Fujinaga, McGill University, Montréal—programming on Unix
workstations and PC; output to Nutation [notation program for the NeXT]. Now

licensed to A-R Editions.

*Starred contributors are among the respondents whose work is represented in the ensuing pages.

Seven Current Projects

The seven detailed responses we received concern three programs running on
Unix machines and three on PCs. These can be briefly identified as follows:

Program Respondent Platform  Output
format(s)
AMSR Kia-Chuan Ng Unix MIDI
MidiScan Christopher Newell MS-DOS  MIDI
MusicReader William McGee MS-DOS  DARMS,
MIDI
NoteScan Cindy Grande Macintosh, NoteScan
MS-DOS  NoteScan
OMR Martin Roth Unix Lipsia
SAM Elizabeth Botha MS-DOS MOD
SightReader Nicholas Carter Unix SCORE

Application

sound
sound
printing,
sound
printing,
sound
printing
sound
printing

Since the difficulty of optical recognition varies tremendously with the kind of music
scanned, our questionnaire listed ten kinds of pieces that would produce different
problems. Respondents were asked to rate the difficulty of each. Their responses are
indicated in Table 1. Note that the two examples we circulated—by Handel and Clementi
respectively—represent a single printed part from an orchestral score and a simple printed
score for piano. Respondents were also asked to rate the difficulty of capturing various

kinds of musical objects. The results are indicated in Table 2.

Note that most

participants did not attempt to recognize all the object types in the set pieces.
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A one-page description of each project follows these two tables of general
information. In team efforts, the name of the respondent is indicated by an asterisk (*).
Bibliographical citations are given with annotations at the end of the article. Then the
set pieces are discussed and performance results are given.

| Midi- | Music- | Note-
| Scan | Reader | Scan
Pnntedpartslb:mdor easy |somewhat| easy tested tested being tested
: orchestra: =50 easy tested
- — — — - - tested
Printed lead sheets — easy — — tested — tested
'hr;nl;éd]s‘cares/dhémﬁer || somewhat — somewhat | tested — being tested
: - Tmusic easy easy tested
. Pﬁhtéd‘;scyresfdféhesmliz' somewhat | somewhat | somewhat | tested — being tested
i difficult easy easy tested
. : Prmwd scoreslplano : easy easy somewhat | tested tested easy tested
: - voml S difficult
(popular/folk)
mted scores/éhorél || moderate | somewhat | somewhat — - — tested
: easy easy
: .»FHCSiiniles/early,printed — — — - — — —_
music :
: Manuscnptslreccnt | ditficunt somewhat — — — - -
o easy
- Manuscripts/early - — | difficare [ — - - -
Maximum i_n_xmberqf;_ : no 16 9 no not not stated | not stated
parts in score - maximum maximum | relevant

Table 1. Repertories attempted in the testing of optical recognition software. Respondents
were asked to indicate which ones had been attempted and to rate the results in achieving accurate
recognition on a five-point scale ranging from easy to difficult. The SightReader response did not
provide separate ratings but said that the relative difficulty depends on the musical content of the
pages and the quality of the printing, a position that undoubtedly applies to the other programs as
well.
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Noteheads (btack) 1 1 1
: Noteheads (non—conuguous) 1 1 1 2 3 X
: m two-note chords
2 1 1 2 3 X X
1 1 1 1 X X
1 1 1 1 — X
o lelsig 2 1 2 5 X X
 Timesignaures | — 1 5 5 — = 1 =
_Kef »s’i‘_gr}artur’cs.r. e 3 1 2 1 4 X X
TAccidenals || 3 1 2 2 X X
v Gracemtes e - — 3 — — — —
o Omaments » 7 — — 3 _ _ _ —
Dynarmcs ietters (p, D - — — — _ _ — —
i '1or_x_matks (staccato, etc.) 1 — 1 — 4 X X
: Tempo words : - _— - - - - —_
Text underlay - - - — — — —
Crescendos dtmmuendos T 4 —_ — - — X -X
"~ Beams ' 2 1 1 2 3 X x|
Braces ' - - — — —_ — X
: Brackets : v — — - - — — X
Baﬂmes @ar) 1 1 1 2 2 X X
Barlmes (score) 2 1 1 2 — X X
Tm — 1 1 . x -~ - .
: Slurs - 1 2 — 3 — — — X
[ Topter rumeras T e e e
| BasoComimofguation | — | — | — | — | — | = | -
L= — — — — - X

Table 2. Musical features supported by optical recognition software. Respondents were asked
to score the competence of their programs in general in recognizing each feature on a sliding scale
in which 1 = very easy to recognize and 5 = very difficult to recognize. Some respondents
merely indicate which features are supported; these responses are represented by an X.
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Automatic Music Score Recogniser (AMSR)

Developers: Kia-Chuan Ng* and Roger D. Boyle

Location: The University of Leeds, England
Hardware/operating system: Unix (Silicon Graphics Indigo)
Scanning equipment: Hewlett Packard ScanJet Plus
Scanning resolution: 300 d.p.i.

Export format: Standard MIDI files

Intended applications: sound, printing, analysis
Anticipated date of availability: end of 1994

AMSR, which is being developed on a Unix workstation, is a graphics-to-sound
translation program. It utilizes a screen display of the scanned bit-mapped image. There
is no need to provide a screen display of the reconstructed score, since it does not aim
to support a full range of music printing features. In consequence, however, there is
currently no support for screen editing of the information. No information about the two
sample pieces distributed was included in the response. However, the respondents report
having tested their program on extracts from piano sonatas by Beethoven and Mozart and
solo violin parts from Bach’s sonatas and partitas.

The overall approach is described as one employing a method which directly reverses
the process of music writing. Whereas a composer would normally write a notehead
followed by a stem and/or a beam and lastly other markings such as slurs and ties, this
group would first pick out long and thin features such as slurs and ties, followed by
beams, then stems. In this way the complicated compound features are broken up into
a lower graphical level of primitives before recognition.

Currently an effort is being made to use feedback from the Recogniser to control the
segmentation into musical primitives automatically. Further information is available in
the respondents’ article on segmentation [see References].

Further information: Kia-Chuan Ng, Division of Artificial Intelligence, School of Computer
Studies, The University of Leeds, Leeds LS2 9JT, England, UK; tel.: +44 532/336798; fax:
532/335468; e-mail: kia@scs.leeds.ac.uk. Roger D. Boyle: roger@scs.leeds.ac.uk.
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MidiScan

Respondent: Christopher Newell

Location: Musitek, Ojai, California

Hardware/operating system: MS-DOS/Windows 3.1 (286, 386, 486, PS II compatible)
Scanning equipment: any scanner capable of producing TIFF files can be used
Scanning resolution: 300 d.p.i.

Export format: Standard MIDI files, readable on the Mac, Atari, and Amiga as well as
the originating DOS machine

Intended applications: sound via MIDI

Anticipated date of availability: available by direct mail from Musitek and through music
merchants since May 1993

MidiScan, the first commercial program for music recognition, is a self-contained
system for converting printed information to Standard MIDI files. [It does not attempt
to recognize objects not represented in a Standard MIDI file.] Major parts of the
program have been written by Wladyslav Homenda (CPZH, Warsaw, Poland).

Users need a hand-held or fullpage scanner to capture each page of the score as well
as imaging software that is capable of auto-switching and outputs TIFF files. The TIFF
files are loaded and processed sequentially by MIDISCAN. User intervention is required
only for screen editing. The bit-mapped image which it displays can be edited on the
screen with the Music Notation Object Recognition (MNOD) graphical editor.

MidiScan quotes an approximate recognition time of 5 minutes per page of music.

Further information: Christopher Newell, Musitek Music Recognition Technologies, 410 Bryant
Circle, Ste. K, Ojai, CA 93023-4209; tel.: (805) 646-8051; fax: (805) 646-8099; no e-mail
address provided. [A review of MidiScan by Martin Roth appeared in the November 3 (1993)
issue of Roth’s electronic discussion of optical music recognition.]
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MusicReader

Developers: William F. McGee* and Paul Merkley

Location: Ontario, Canada [originated at University of Ottawa]
Hardware/operating system: MS-DOS (386/16 MHrz)

Scanning equipment: Hewlett Packard ScanJet

Scanning resolution: 300 d.p.i.

Export formats: Standard MIDI, General MIDI, DARMS

Intended applications: sound, printing, analysis

Anticipated date of availability: January 1994 (beta-test version currently available)

MusicReader, on which an fuller description was separately submitted, provides
display of a bit-mapped image. It produces both DARMS and MIDI files that can be read
and edited using the Note Processor, a notation program for the PC. The reconstructed
part or score can be displayed and edited using the Note Processor. DARMS data can
also be used for analytical applications. MusicReader’s Standard and General MIDI files
can also be used by MIDI notation programs and by MIDI hardware including
synthesizers and tone generators. The MIDI files produced provide realizations for trills,
mordents, turns, and arpeggios.

MusicReader software also offers an alternative input option to the user without a
scanner, whereby a MIDI keyboard is used for pitch acquisition and a computer keyboard
supplies duration. Output to both DARMS and MIDI is possible.

MusicReader has established a service bureau and offers scanning, with output in
either format, at $5/page. Hardcopy is available at an additional $5/page.

Further information: William F. McGee, 73 Crystal Beach Drive, Nepean, Ontario, Canada
K2H SN3; tel.: 613/828-9130; fax: 828-9130; e-mail: mcgee@citr.ee.mcgill.ca. Paul Merkley,
Department of Music, University of Ottawa, Ottawa, Canada K1N 6NS5; tel.: (613) 564-9239; fax:
(613) 564-5643; ; e-mail: merkley@acadvml.uottawa.ca. An extensive description of this system
is provided in the Developer’s Report on pp. 146-51.
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NoteScan™

Respondent: Cindy Grande*

Location: Grande Software, Inc., Seattle, WA

Hardware/operating system: Macintosh Ilci (25MHz); conversion to MS-DOS
Scanning equipment: Apple One Scanner

Scanning resolution: 200 and 300 d.p.i.

Export format: NoteScan

Intended applications: printing, sound, analysis

Anticipated date of availability: demo disk available; to be offered as enhancements to
two notation programs—Nightingale and Music Printer Plus—by Temporal Acuity
Products in Spring 1994

NoteScan converts recognized information to an intermediate file format (NoteScan
NTIF), from which it may be converted to a wide variety of proprietary formats used by
commercial notation programs. Any scanner producing TIFF files may be used.
Existing commercial agreements for its use are non-exclusive.

The Macintosh version produces bitmapped images on the screen. These may be
edited using programs such as Adobe Photoshop. The reconstructed score may be
displayed, enlarged, reduced, and edited in music applications programs such as Music
Printer Plus and Nightingale.

Cindy Grande is the developer of the recognizer logic. Charles Rose wrote the
Nightingale interface. Gary Barber wrote the MS-DOS adaptation and the interface to
Music Printer Plus.

Further information: Cindy Grande, President, Grande Software, Inc., 19004 37th Avenue South,
Seattle, WA 98188; tel.: (206) 439-9828; fax: (206) 824-2612. Temporal Acuity Products, Inc.,
is located as 300 120th Avenue N.E., Bldg. 1, Bellevue, WA 98005; tel.: (800) 426-2673.
NoteScan is a trademark of Grande Software, Inc.
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Optical Music Recognition (OMR)

Respondent: Martin Roth

Location: Eidgenossische Technische Hochschule, Zurich, Switzerland
Hardware/operating system: Unix (Sun, NeXT)

Scanning equipment: various

Scanning resolution: 200 and 300 d.p.i.

Export format: Lipsia

Intended applications: printing

Anticipated date of availability: undertaken as thesis project; future plans pending

Development of the OMR program was initiated as a thesis project in engineering and
computer science (1993) and is not directly comparable with other programs listed here.
It is intended to support automatic recognition of music fonts. The program, in C,
concentrates on such features as a bounding box and estimates of weight and center of
gravity. It does not attempt to supply semantic information needed for interpretation of
captured symbols. It has been designed to work with Lipsia, a notation editor developed
several years ago at ETH by Giovanni Miiller [see CM 1987, lllustration #44, p- 71].

OMR is oriented toward object acquisition. Bit-mapped images may be edited using
the workstation utilities X-loadimage and X-view. A semantic lexicon is used to
determine placement by Lipsia; OMR has no semantic constraints. A reconstructed score
may be shown using Display postscript on a NeXT workstation. Development of Lipsia
has now ceased, and the future path of OMR’s development is uncertain. The program
is unusual in handling an arbitrary number of staves.

Further Information: Martin Roth, ETH Zurich, IPS - RZ F16, Steinstrasse 58, CH-8003
Zurich, Switzerland; tel.: +10 1/256 55 68; 1/463 13 61; fax: 1/261 04 68; e-mail:
roth@ips.id.ethz.ch. Roth moderates an electronic discussion of optical music recognition
(omr@ips.ed.ethz.ch) and maintains an electronic bibliography in several formats (details given
on p. 145).
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Score Analyzing Maestro (SAM)

Developers: Elizabeth C. Botha* and students (Karl Geggus, Johan Boot)

Location: University of Pretoria, South Africa

Hardware/operating system: MS-DOS (486/33)

Scanning equipment: Hewlett Packard ScanJet

Scanning resolution: 300 d.p.i.

Export format: MOD (Amiga) format [supported by Soundblaster card]

Intended applications: sound, conventional music notation, Braille music notation,
analysis, educational software

Anticipated date of availability: first half of 1994

SAM is a self-contained acquisition program for the PC oriented entirely toward
sound output. It does not provide for screen display and editing of the reconstructed
score. Pitch and duration are captured and plans are underway to implement volume
level and change parameters in output files from the recognition of dynamics indicators
in scanned scores. Support for Standard MIDI files and General MIDI is planned.

The developers intend to make the program available electronically by FTP. For
current information via the Internet send the command:

At mainframe prompt: ftp fip.ee.up.ac.za
Logon: anonymous

To change directories: cd /u/ftp/pub/musiek
To prepare for a binary transfer: binary

Retrieve (get) the file readme.tex. The documentation files are updated as changes in the
program are implemented.

Further information: Dr. Elizabeth C. Botha, Dept. of Electrical and Electronic Engineering,
University of Pretoria, Pretoria 000 2, South Africa; tel.: +27 12/420-2981; fax: 12/437837; e-

mail: botha@ford.ee.up.ac.za.



Optical Recognition 127

SightReader

Respondent: Nicholas P. Carter

Location: University of Surrey, Guildford, England

Hardware/operating system: Unix (Sun, Hewlett Packard, NeXT) for development; MS-
DOS (486) for output

Scanning equipment: Hewlett Packard ScanJet (or other scanner producing TIFF files)

Scanning resolution: 300 d.p.i.

Export format: SCORE input files and SightReader files

Intended applications: sound, notation, analysis, electronic distribution

Anticipated date of availability: undetermined; licensed to Coda Music Technology

SightReader has been developed on Unix workstations and makes use of separate
utilities, for example to provide a scrollable screen view of bit-mapped images converted
to TIFF files. The bitmap can be cropped and scaled. The image can be reduced or
enlarged. SightReader exports files to the input format used by SCORE, a notation
program for the PC. Parts of SightReader are now running on a PC.

In separate experiments, SightReader was used to explore the capture of information
from late Renaissance part books containing white mensural notation [see "Segmentation”
in the Bibliography] and with the reconstruction of an early twentieth-century score [see
"Walton"].

Further information: Dr. Nicholas P. Carter, Department of Physics, University of Surrey,
Guildford, Surrey GU2 5XH, England, UK; tel.: +44 483/300800; fax: 483/300803; e-mail:
N.Carter@ph.surrey.ac.uk. Also see the Developer’s Report on pp. 152-58.
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Set Pieces

In the interests of creating a common focus for discussion, two musical examples
were distributed with the questionnaire. The first was a violin part from Handel’s
opera Radamisto.

Andante larghetto

Example 1. Excerpt from Handel’s Radamisto.

This example contains beamed eighth, sixteenth, and thirty-second notes, as well
as single quarter and eighth notes with a key signature involving four sharps and
numerous accidentals of various kinds. It also has half, quarter, and eighth rests. In
addition it includes a tempo indication, dynamics markings, a multibar abbreviation, a
measure number, and a trill sign. This example was based on a recent print generated
by computer at CCARH.
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Example 2. Excerpt from a Clementi sonatina in G Major.
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The second example was an eight-bar excerpt from a well known piano sonatina by
Clementi. It contains half, quarter, eighth, and sixteenth notes (some with dots and/or
beams), quarter rests, and repeat signs. It is mainly different from the first example in
that (a) it is in a two-stave score, (b) it contains numerous slurs, and (3) it contains
fingering numbers over many notes. This example was published in the early twentieth
century by conventional means.

Respondents were given the option of scanning either or both of these examples or
an item of their own choice. They were asked to record the time required to go, in four
steps, from the original material to its complete, accurate reconstruction. Machine speeds
were not uniformly reported. Respondents were asked to compute a statistical result
representing the accuracy of the automatically captured data. In the absence of a
commonly accepted way of making such a computation, they were also asked to explain
their own means and to suggest a way of providing a uniform measure of competence.

Test Reports and Results

Respondents’ reports provide little basis for comparison not only because of
differences in hardware, operating systems, and software environments but also
because some respondents did not provide precise numbers or scanned material other
than what was sent. One group, AMSR, did not provide scanning times for this
survey.

MidiScan
MidiScan [see description on p. 122] reported the following scanning times for the
Handel example:

T Henaa ]

Input time 0:12
Image processing time 0:20
Screen correction time 0:30
QOutput time 0:20
T Toaispeiome ) an |

Table 3. MidiScan: Scanning, processing, and output time in minutes and
seconds. Output was to MIDI files. Processing was done on a 486.
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Note that since a MIDI file is the objective, this scan could exclude the dynamics
marks, trill signs, and tempo words ("Andante larghetto"”) and that no printed notation
is produced by MidiScan.

MusicReader
MusicReader’s tests (Table 4) were run on a 386/16 MHz PC.

[ Fungd [ Clemens ]

Input time 0:16 0:22
Image processing time 4:16 8:50
Screen correction time 3:05 6:28
Output time 0:38 0:30
L ~ Total elapsed time “ 815 1 1610

Table 4. MusicReader: scanning time in minutes and seconds. "Screen
correction” represents time spent editing DARMS code. Output time represents
DARMS-t0-MIDI conversion and audio playback. Processing was done on a 386.

Since other DOS contributors offered results based on 486 performance, we asked
MusicReader for an estimate of times that would be achieved if the tests had been
performed on a 486. These were roughly calculated to be one third of the values shown
in Table 4. However, it would not necessarily follow that screen correction time, the
most substantial part of the process, would fall by this much, since it is dependent largely
on manual skills.

I1 !G !K4# !MC,00@Andante larghettos SRE ((8S.D,VF (9TD))) /
I1 (306D (9S.D (8TD))) (32ED (31s.D (30TD)))

(33ED (31S.D (30TD))) (9ED (30S.D (31TD))) /
I1 30QD S5RE ((9S5.D (8TD))) (7ED 6ED) SRE ((31S.D (30TD))) /
I1 (9##ED 30ED) 4RE ((30S.D (9x#TD))) (8#ED 9ED 7ED 8xED) /
I1 !'G 'Ké4# 6ED 4QU ((3SU 2sU)) (3EU (2SU 1sSU)) (OE.U,OT (1sU)) /
I1 1QU S5RQ SRH /
I1 R4AW /
I1 S5RH S5RQ SRE ((7S.D,VP (6TD))) /
11 (SH#HED 6ED) SRE ((6S.D (5%TD))) (4#EU SEU) SRQ /
I1 SRH 4RE 7ED 8QD /

Example 3. DARMS code for the Handel example produced by MusicReader.
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Since MusicReader supports both a print code (DARMS; cf. Example 3) and a sound
code (MIDI), it must support a broader range of objects than if it supported only one
output format. Therefore in the screen editing phase for the Handel example
MusicReader would be obliged to add codes for dynamics and tempo words; in the
Clementi example the dynamics and fingering numbers would need to be added. The
commentary on MusicReader is on p. 123. A substantial description is given inde-
pendently on pp. 146-51.

NoteScan
NoteScan, unknown to us when our survey was distributed, was located shortly

before we went to press. In lieu of the distributed examples, its respondent provided
results of other timed tests; accuracy rates above 90% were claimed. These tests were
all run on a Macintosh IIci/25MHz with output to both the NoteScan file format and to
Nightingale. Times reported below (in minutes and seconds) do not include editing:

1. Bach: Two-Part Invention in G Minor, BWV 782, Bars 1-10,
scanned from a typeset original of excellent quality at 200 d.p.i. 3:30

2. Beethoven: Piano Sonata Op. 81a ("Les Adieux"), First Movement, Bars 146-175,
scanned from a typeset original of excellent quality at 200 d.p.i. 4:10

3. Haydn: (unidentified) String Quartet in F, final 15 bars of a fast movement,
scanned from a miniature score at 300 d.p.i. 5:20

4. "Feeling Good" [piano/vocal with guitar chords], Bars 1-10 [excluding text and
guitar chords]; scanned from a computer-set arrangement [Finale] at 300 d.p.i. 3:10

5. Leo Ornstein: Piano Sonata No. 9, 20-bar excerpt with complex voicing,
numerous accidentals, efc.; scanned from typeset original at 300 d.p.i. 7:30

Examples 4a, b, and c show a three-bar passage from this excerpt:

“l —
945 £ EEhe They, e e e O e = PN
Q ) ) L“ IL’ l h
(—= = —— = % - ——
J b "ﬁ Qt —~ \J 1 “f *5 i

© 1990 Leo Ornstein. Used by permission of
Poon Hill Press, Woodside, CA 94062

Example 4a. Leo Ornstein: Piano Sonata No. 8—original print.
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Example 4c. Leo Ornstein: Piano Sonata No. 8—NoteScan results edited and transposed
using Nightingale.

L

&l

OMR
OMR reported scanning time only, with the following results:
Handel 0:22
Clementi 1:03

In lieu of other measures of time, the respondent for OMR provided actual output
from his program (shown below). His comments point to the kinds of problems that
those who experiment with optical recognition often encounter. He remarked that (1) the
examples were "very light"; (2) the noteheads were smaller than those on which his
program had been trained; and (3) when noteheads are not recognized, stems can be
mistaken for barlines.

Example Sa. OMR: Unedited scan of the Handel example.
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Example 5b. OMR: Unedited scan of the Clementi example.

Examples 5a and b illustrate one feature that occurs commonly in optical
recognition: mistaken object types. In Example 5a dynamics indications have been
replaced by white noteheads. In Example 5b it appears that the fingering numeral 2
has been read as the accent > and the numeral 3 as the accent < . Although in this
case the error is obvious, in other situations, errors generated by scanners can be hard
to detect visually and may survive until the data is actually put to use in an
application. Recognition software can also generate completely spurious objects,
especially from specks of dirt on the scanned page. Thus the proofreading of scanned
material is often more cumbersome than that of ordinary typesetting.

SAM
The developers of SAM provided scanning times for both the Clementi example and
a Bach keyboard minuet. Times for the Clementi example are shown in Table 5.

Operation Clementi ]
Input time 5:15 j
Image processing time 6:10
Screen correction time 5:55
Output time 2:20
ﬂ Toaldgpedime | w0 |

Table 5. SAM: Time (in minutes and seconds) elapsed in the scan of the 8-bar
Clementi example. A 486/33 was used.
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Example 6. SAM: Final staff of the Bach minuet scanned.
Unit 20 Unit 21
Line0 xs 0 ys 121 xe 264 ye 117 Line0 xs 0 ys 122 xe 232 ye 119
Linel xs 0 ys 142 xe 264 ye 138 Linel xs 0 ys 142 xe 232 ye 140
Line2 xs 0 ys 163 xe 264 ye 159 Line2 xs 0 ys 163 xe 232 ye 161
Line3 xs 0 ys 184 xe 264 ye 180 Line3 xs 0 ys 184 xe 232 ye 182
Lined4 xs 0 ys 205 xe 264 ye 201 Line4 xs 0 ys 205 xe 232 ye 203
Lineb5 xs 0 ys 331 xe 264 ye 326 Lineb5 xs 0 ys 330 xe 232 ye 327
Line6 xs 0 ys 352 xe 264 ye 348 Line6 xs 0 ys 351 xe 232 ye 348
Line7 xs 0 ys 372 xe 264 ye 368 Line7 xs 0 ys 372 xe 232 ye 369
Line8 xs 0 ys 393 xe 264 ye 389 Line8 xs 0 ys 393 xe 232 ye 390
Line9 xs 0 ys 414 xe 264 ye 410 Line9 xs 0 414 xe 232 ye 410

Crotchetl xp
Crotchetl xp
Crotchet2 xp
Crotchet2 xp
Crotchetl xp
Crotchetl xp
Crotchetl xp
Staccato xp
Staccato xp
Decrescendo
Staccato xp
Staccato xp

135 yp 183 xs 0 ys 0
215 yp 191 xs 0 ys O
40 yp 163 x3s 0 ys 0
86 yp 143 xs 0 ys 0
134 yp 392 xs 0 ys O
39 yp 341 xs 0 ys O
211 yp 370 xs 0 ys O
134 yp 218 xs 8
214 yp 219 xs 8
xp 31 yp 240 xs
212 yp 336 xs 8
132 yp 424 xs O

ys 7
ys 6
216 ys 30
ys 6
ys 0O

ys

Minim xp 43 yp 184 xs 0 ys 0
Minim xp 43 yp 215 xs 0 ys O
Minim xp 43 yp 240 xs 0 ys 0
Crotchetl xp 38 yp 341 xs 0 ys 0O
Crotchetl xp 177 yp 411 xs 0 ys
Crotchetl xp 106 yp 372 xs 0 ys
Dotdurmod xp 71 yp 169 xs 16 ys
Dotdurmod xp 72 yp 213 xs 16 ys
Dotdurmod xp 71 yp 239 xs 16 ys
Staccato xp 41 yp 312 xs 8 ys 6
Staccato xp 109 yp 335 xs 8 ys 6
Staccato xp 173 yp 439 xs 8 ys 5

VWWO O

Example 7. SAM: File excerpt representing the last two bars of Example 6.

The minuet is one of 32 bars—four times the length of the Clementi example. It
is also somewhat more difficult (at least in the second half) in texture as well as
number and proximity of symbols than the Clementi example. These factors should
be taken into account in examining the performance figures given in Table 6.

L _ Operation e
[ Input time I
Image processing time 21:47
Screen correction time 4:30
Output time 1:13

Total elapsed time

Table 6. SAM: Time required to recognize a 32-bar Bach minuet.
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SightReader

SightReader submitted information concerning the scanning of one page of a Haydn
symphony. The original is shown as Example 8. This has more staves (9) per system
than the other examples submitted but is relatively free of objects other than black notes,
accidentals, beams, and slurs.
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Example 8. SightReader: One system from Haydn’s Symphony No. 8 (original
image, reduced).

This example provides a useful opportunity to address the issue of counting the
number of graphic objects, which may be significantly greater than the number of
musical objects as we normally conceive of them. Horizontal line objects, for example,
may be said to include 1 system, or 9 staves, or 45 staff lines. Vertical line objects
include 8 barlines (each presented as two graphic objects, because of the section breaks)
as well as the barline that forms part of the brace. A graphics recogniser must take
separate account of the curved end pieces and the two curly brackets. This example
contains 256 noteheads; these are attached to 254 stems. Ten stems have flags.
Musicians would be inclined to consider these 520 graphics objects to make up 256
musical entities ("the notes"). We also find 24 eighth rests and 7 whole rests. There are
20 single beams (of three eighth notes) and 30 double beams (of six sixteenth notes);
there are also 30 slurs. By way of miscellaneous markings, the example contains 9 clef
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signs, 36 accidentals, 9 dots of prolongation, 9 dynamics signs, and 1 rehearsal number
(containing two graphic parts—a box and a numeral).

SightReader provided samples of acquisition before and after correction. These are
shown as Examples 9 (below) and 10 (on the following page).
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Example 9. SightReader: Lower system of Haydn symphony after acquisition
and translation to SCORE but before correction. Error categories are coded A
(superfluous notes), B (erroneous pitch), and C (error in use of accidental).

Notice that in Example 9 there are superfluous notes (Error Type A; 4 instances),
mistaken pitches (Type B; 2 instances), and superfluous, misconstrued, and misplaced
accidentals (Type C; 8 instances). These errors were attributed to SCORE’s difficulty
in placing barlines accurately. Slurs and beams are captured by SightReader, while
dynamics markings are added editorially in SCORE files (Example 10). Durational
values with the wrong visual grammar (i.e., quarter rests in place of two eighths; 11
instances) are also corrected editorially.
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Example 10. SightReader: Same system after editorial correction using SCORE.

“Operation

Input time

Image processing time 00:48

Screen correction time 19:30

Output time 01:15

Table 7. SightReader: Elapsed time (in minutes and seconds) in the recognition

of one page (two systems including the one shown above) of Haydn’s Symphony
No. 8.
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Quantifying Program Performance

The easiest way to rate the efficiency of the system is to count the number of
objects on the page and express the number recognized correctly as a percentage. It
is not necessarily a very satisfactory method, since the misrecognition of one object
can obviate the correct recognition of another that is contingent. From the user’s
point of view, some objects may be worth weighting more heavily than others, but
such weightings would be relative to the repertory at hand.

We asked respondents to indicate the relative reliability of their programs in
correctly recognizing all the object types that occur in the two examples we
distributed. Their self-assessments are shown in Table 8.

- Object ]l "Midi- | Musicc | Note | OMR | SAM ]]
|| Scan | Reader | Scan | _ i
whitenoteé X 5 5 4 2
bléck ﬁotes . 1 1 1 2 2
- rests 2 2 3 3 2
stems 1 1 1 2 2
beams 2 1 2 3 3
clefs 1 3 5 4 2
barlines 1 1 2 2 1
. braces: X X X X b
sh’arp signs 1 1 2 2 2
nathral 1 1 2 2 2
signs
r fermatas X X X X X
L ‘slurs | X 4 X X X

Table 8. Self-estimates of levels of accuracy in recognition of objects. An
x means the object is not attempted. A score of 1 means it is easily captured.
SightReader did not provide evaluations.
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Measures of the rapidity with which a musical passage can be interpreted give only
a very preliminary indication of software performance. Accuracy is essential if optical
recognition is to become a useful tool.

How might accuracy be assessed? We asked our respondents to suggest ways in
which this might be computed. The predominant view expressed was that one might
divide the total number of objects correctly identified by the total number of objects in
the example. If, for example, there are 100 objects in an example and 60 are correctly
identified, a score of 60% would be achieved.

In moving from the generalization to the actuality, a number of considerations arise:

® In all cases mentioned here there is a discrepancy between the number of objects
present and the number attempted. This is a result of the implementation of object
classes one by one (Table 8 indicates classes unattempted with an "x"), since at the
present time there is no program that attempts to identify all the object classes present
in the relatively simple examples that we circulated. The program is seen to be more
competent if the total number of objects correctly identified is divided by the total
number attempted.

Suppose that there are 100 objects in an example, 80 fall into classes that are
attempted, and 60 are correctly identified. Whereas by Method 1 (total present/total
identified) a score of 60% would be attained, by Method 2 (total attempted/total
identified) a score of 75% would be attained. To the end user who is interested in a
competent end result, the first measure gives a fairer picture.

® Systems do not all define objects in the same way. A "note” may be an indivisible
unit in one system whereas in another a notehead and a notestem may be classed as
two separate objects. Two evaluators scanning the same hypothetical example may
find 100 objects if the composite note is considered to be the smallest unit of
information and 125 objects if the graphical parts of the note (heads, stems, flags, ez
al.) are taken to be individual objects.

® Grande suggests also tabulating spurious objects falsely recognized and subtracting
them from the total correctly identified before dividing by the total present.

The first consideration is compounded by the substitution of "friendly examples," that
is, those lacking object classes that the program does not attempt to recognize, since there
will be little discrepancy between the first and second methods of calculation.
SightReader, for example, claims an accuracy of 94.2% in the Haydn example presented.
This is based on 778 SCORE items in the file on which the reconstruction is based.
Among these 45 required correction. The page in question contained the system shown
in Example 8 and the preceding system, which is very comparable in musical detail. It
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is clear that by defining objects in a graphical sense rather than a musical sense the
numbers of items is elastic and could have been greater still [see pp. 135-6].

Another issue that complicates measures of performance is how the same items would
be treated if encoded (e.g., alphanumerically) as input to the program used to edit the
example. While no system in common use requires separate representation of every staff
line and many facilitate the creation of a template to set up systems, there is some open-
endedness in most systems. The DARMS-based Note Processor would create the
rehearsal number, for example, by assembling two right angles to form a box and placing
a numeral within it (3 objects); SCORE in some instances requires insetting a second
beam to create sixteenth-note groups from eighth-note groups. In notation programs
there has always been a tradeoff between ease of use and degree of control over the
result. In evaluating software for optical recognition it will be as important as ever to
remember that intended use is the most important factor to consider in selecting a system.

Those whose sole objective is to acquire files (e.g., MIDI) for sound applications can
happily ignore the handling of beams and rehearsal numbers as well as system layout and
the like. Reengineering of systems designed in the first instance for sound output to
support complex notational output remains a difficult task.

Considering that the field of optical recognition is still in its infancy, it would be
inappropriate to insist on common examples, since it is in the nature of scanning
programs to perform best on material that resembles the material used for training. This
will inevitably vary widely from program to program. As we demonstrated at the
beginning, the graphic quality of materials is generally poorer than one would assume on
a cursory glance, but there are many different kinds of typographical poverty. At a
technical level, no two kinds may correspond in the problems they pose. Thus, good
editing tools for passing the scanned result to an applications program become essential.
The route to competent programs for sound output should be shorter than that to
programs for notation, since less information needs to be conveyed.

The Future

Two Japanese researchers with substantial experience in the development of optical
recognition, Hirokazu Kato and Seiji Inokuchi, assert that the goal of finding a single
method for recognizing all musical symbols may be unrealistic. Their work uses a five-
layer processing model that ascends from the pixel level through "primitives" (symbol
elements such as flags and beams), complete symbols, and musical meaning (pitch and
duration) to interpretations of the acquired information. This model implicitly suggests
the degree to which the intellectual obstacles to accurate recognition arise from the
complexity of the visual grammar of music.
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142 Computing in Musicology

Carter, Nicholas P. "A New Edition of Walton’s Facade Using Automatic Score Recognition”
in Advances in Structural and Syntactic Pattern Recognition, ed. Horst Bunke (Singapore:
World Scientific), pp. 352-62.

Describes problems encountered in replicating a printed score from the early twentieth
century.

Carter, Nicholas P. "Segmentation and Preliminary Recognition of Madrigals Notated in
White Mensural Notation," Machine Vision and Applications 5 (1992), 223-30.

Describes efforts to recognize printed notation used in the late sixteenth and early
seventeenth centuries.

Choi, James. "Optical Recognition of the Printed Musical Score.” M.S. thesis, Northwestern
University, [1992]. Further information: phantom@merle.acns.nwu.edu.

Clarke, Alastair, Malcolm Brown, and Mike Thorne. "Problems to be faced by the
Developers of Computer Based Automatic Music Recognisers,” Proceedings of the
International Computer Music Conference 1990 (San Francisco: Computer Music
Association, 1990), pp. 345-347.

Couasnon, Bertrand. "Segmentation et reconnaissance de partitions musicales guidées par une
grammaire."

Couasnon’s grammatical approach to recognition of printed scores involves a dual neural
net/rule-base system approach to recognition of printed scores. Further information:
IRISA, INSA - Dept. Informatique, 20, av. des Buttes de Coesmes, 35043 Rennes Cedex,
France; tel.: +33 99/28-64-91; fax: 99/63-67-05; e-mail: couasnon@irisa.fr.

Fujinaga, Ichiro. "Optical Music Recognition using Projections.” M.A. thesis, McGill
University, 1988.

This project has been continued in doctoral research about OMR software scheduled for
completion in 1994. Further information: Ichiro Fujinaga, Peabody Conservatory of
Music, 1 E. Mt. Vernon Place, Baltimore MD, 21202; e-mail: ich@music.mcgill.ca.

Fujinaga, Ichiro, Bo Alphonce, and Bruce Pennycook. "Issues in the Design of an Optical
Music Recognition System, " Proceedings of the International Computer Music Conference
1989 (San Francisco: CMA, 1989), pp. 113-6.

Fujinaga, Ichiro, Bo Alphonce, Bruce Pennycook and Natalie Boisvert. "Optical Recognition
of Musical Notation by Computer,” Computers in Music Research 1 (1989), 161-4.



Optical Recognition 143

Fujinaga, Ichiro, Bo Alphonce, Bruce Pennycook, and Glendon Diener. "Interactive Optical
Music Recognition," Proceedings of the International Computer Music Conference 1992
(San Jose: 1992), pp. 117-21.
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See the contribution on AMSR.
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Handwritten Music Notation," Proceedings of the International Computer Music
Conference 1992 (San Jose: 1992), pp. 125-7.

Describes research based on the premise that while a program which reads handwritten
music could probably read printed music, the reverse is not true. Users are required to
write music on commercially available printed score paper.

Yadid, Orly, Eliyahu Brutman, Lior Dvir, Moti Gerner, and Uri Shimony. "RAMIT: [A]
Neural Network for Recognition of Musical Notes," Proceedings of the International
Computer Music Conference 1992 (San Jose: 1992), pp. 128-31.

Describes the Neocognitron, a neural network model for visual recognition of black and
white patterns.
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It is accessible by FTP to maggia.ethz.ch [129.132.17.1] in the directory /pub/roth/omrbib. Both
compressed and uncompressed files are available.



146 Developer’s Report #1:
William F. McGee

MusicReader:
An Interactive Optical Music Recognition System

The MusicReader is an interactive one-pass optical music recognition system. It can
capture information from a printed score and translate it to both a DARMS file (for
printing) and a MIDI file (for playback) in a reasonable time. The system, which is
implemented on a 640k 386/486 personal computer, supports interactive software
requiring the use of a mouse, computer keyboard, and color display. We have adopted
the basic approach developed by David Prerau for his dissertation at the Massachusetts
Institute of Technology in 1970. This approach follows scanning with the removal of
staff lines, the identification of connected pixel components, the classification of resulting
musical entities, and the production of DARMS code as output.

The heart of our system is the one-pass classifier, which includes a robust staffline
remover, and an integrated beam and chord analyzer. In its current state of development,
our technology can facilitate computer-aided analysis, reorchestration, and (re)printing.
MusicReader’s performance is best on monophonic sources in standard music notation
(such as fake books and part scores), moderate on simpler piano scores, and fair on more
complex music.

The review of the field made recently by Dorothea Blostein and Henry Baird makes
it unnecessary to discuss previous work. In our view an understanding of the work of
Prerau and Nicholas Carter, whose work began in the late Eighties at the University of
Surrey, England, is essential to progress in this field.

The Music Reader System
The following five sets of computer data, discussed below, are used:

1. A pixel representation of the musical score

2. A file containing the classified connected components
with horizontal and vertical placement

3. A DARMS representation

4. A Brinkman score representation

5. A Standard MIDI file

Interactive routines are used in the scanning process (to generate the pixel representation),
in the classification process, and, normally, in the editing of the DARMS text file. Each
routine is described in detail below.
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We have found that with present computer technology, the best results are obtained
through the analysis of connected staves representing several measures. Backtracking is
not used in the classifier; this results in advantages and some minor disadvantages.

1. Scanner Program

A considerable portion of time is spent in the output of the scanning and input of the
classification process: the files are large. A 2-inch segment of an 8-1/2 by 11-inch page
takes 2 x 300 x 8.5 x 300 pixels, i.e., 1.6 megapixels. Data compression techniques
such as those used for facsimile transmission can reduce the size considerably, but these
require coding and decoding. Since the pixels are thrown away anyway, we have opted
for an intermediate position and use run encoding of the black pixels. The use of 16-bit
integers is all that is required. Typical file lengths are 100 to 200 kilobytes. Therefore
we have a file consisting, for each scanned line, of the beginning and end of each run of
black pixels. An end-of-line marker (-1) is used to indicate the end of a line.

For staff-line identification purposes, the image must be a rotated one, as if the
scanning had gone from left to right, rather than from top to bottom. This can be done
in two ways: turning the page around, or doing a software rotation. The difficulty with
a software rotation is that it requires a large memory for the required pointer arithmetic,
limiting the number of staffs that may be readily scanned to five or so.

In the course of the project, we have developed utilities that will translate TIFF files
and unrotated run-encoded files. A utility to remove short white runs is sometimes of
use. For the scanning process itself, a series of tests indicates that on our scanner, a
Hewlett Packard Scanjet, dark images without automatic threshold control enhance the
classification process.

A preliminary scan at 6:1 compression (i.e., 50 dots per inch) is used to reproduce
a crude image on the monitor screen. The operator then uses a mouse to click the upper
left and lower right of a rectangle enclosing the staffs to be analyzed at once. When all
the rectangles have been identified, the scanning itself can proceed. The final scan is at
300 dots per inch and results in a rotated run-length encoded file.

2. Classifier Program
Most of the time is spent on classification. Whereas the input is a run-encoded
rotated image of a few staffs, the output is a text file with the following format items:

¢ the staff number

e left side of component (in pixels)

¢ right side of component (in pixels)

e vertical position of component using DARMS representation
¢ a component identifier, as close to DARMS code as feasible
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The classifier program performs many functions, but the main three, discussed
below, are these:

A. Staffline identification and removal
B. Component identification and classification
C. Beam/chord classification

A. STAFFLINE REMOVAL

While in many kinds of image analysis the isolation of components can proceed in
a straightforward way, in musical scores the stafflines connect many objects and render
them interpretable. For this reason, we concentrate on components with some black
pixels between the stafflines. The identification of the stafflines is also essential for the
DARMS encoding of the components [DARMS specifies vertical heights rather than
pitches]. We find this to be the most frustrating part of optical music analysis. We err
on the side of excess by dropping parts that are common both to stafflines and other
objects. This is a tradeoff which is forced by our design decision to use a one-pass
classifier, a restriction placed upon us by our meager hardware memory resources. The
classifier sweeps along the staff, removing stafflines. As connected components are
identified, they are classified, written to the output file, and released from memory.

Our staffline removal algorithm basically performs a correlation of the current line
and the next line in the left-to-right scan, and if a long thin element is near a current
staffline, it is associated with the staffline, and the position of the staffline is adjusted.
We assume only that stafflines belonging to a common staff are parallel and that the total
number of stafflines is a multiple of five. These staffline-like elements are shown in light
grey on the screen, and the other pixels are shown in white. When the staffline elements
are terminated (usually because they bump into components such as barlines, etc.) they
are removed from memory.

Although the staffline removal algorithm is rugged, the starting position is, of course,
important. The program initially knows neither the number nor the position of the
stafflines. However, when it is determined that the number of short runs is a multiple
of five, the program stops, beeps, and displays what it thinks are the stafflines. The
operator may agree and save the information or disagree and press a key that gives the
number of staffs (currently an integer from 1 to 9). In this second case, the program is
told the position of the first and last of the five stafflines of each staff. Occasionally
initial clefs may be accidentally omitted. The effect is small relative to the difficulty
encountered in accurately identifying C clefs, which have a large number of different
presentations.
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B. COMPONENT ANALYSIS

A connected component analysis is carried out simultaneously with staffline removal.
If a connected component—a set of pixels, all of which are connected—exceeding a size
and position threshold is found, it is displayed in green on the screen. The tentative
DARMS classification, including vertical position, is presented, again in green. The
operator indicates whether to save, change, analyze (for beams and/or chords), or delete
the component. In the case of a change, the prompt turns from green to red, and the
operator simply types in the DARMS representation.

In the beam/chord analyzer, the component is rotated in memory, and the stemlines
are identified much as the stafflines are identified. These stemlines are displayed in
yellow, and the DARMS code associated with each stemline, which is based on a
connected component analysis made when the stemlines are removed, is presented to the
operator, who may save, change, or discard them. The remaining connected components
are classified as beams or notes, and this determines the DARMS representation. A
DARMS comment is applied to each of these components, indicating that they are all part
of the same beamed or chorded component. In addition, the stem direction, the note
duration, and the beaming are indicated. Since most notation programs will perform
beaming automatically, and beaming is unnecessary for MIDI files, there is some
redundancy in this information. We find that the beaming information is useful,
however, in the editing of the DARMS code.

Since several measures cannot fit in one display, whenever a barline is identified, the
screen is refreshed, moving that barline to the left side of the screen.

The classification of the components uses features which include and extend those
presented by Prerau: the size of the bounding rectangle, the relative position of the top
and bottom pixels (used to discriminate sharps, flats and naturals), the width at the
middle in a vertical and horizontal position, the density of the component compared to
the bounding rectangle, and the number of holes. The features are normalized to the
staffline spacing.

C. FEATURE DATA

The features are stored by giving upper and lower bounds for the position features.
A distance measure based on deviance from these bounds, the number of holes, and the
density is used to classify the component. This information may be used to fine-tune the
feature table. It may be customized for a particular musical source or class of printing.

Special utilities operate on a subsidiary output file which contains the features for
all the components. The utility analyzes all of these files appearing in a subdirectory,
prints out the maximum and minimum values for the features as well as the mean and
standard deviations, and displays them on the screen. This information may be used to
update the feature data.
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3. Sort/Syntax Program

The output from the classifier is not in order. What is desired is a sort by staff, and
then by position in the staff. The comments related to beam/chord number are stripped
at this stage. Certain syntax simplifications are made. Notes appearing at the same time
are (optionally) clustered to form a chord. The notes appearing at the same time are
ordered from long duration to short. Dots appearing after an F-clef are dropped, double
dots before a barline are merged into a repeat sign, dots above notes form staccato
marks, and dots after notes are used to lengthen durations. Sharps and flats appearing
at the beginning, if they are in the proper sequence, form a key signature.

Logical problems with the handling of beamed notes within DARMS require the use
of linear decomposition, the creation of separate tracks of information to accurately
represent nonhomophonic textures (for example the presentation of soprano and alto parts
on a single staff). We have found it difficult to automate linear decomposition, even
though we do retain stem directions. It seems preferable to drop the beaming information
completely and restore it with the notation program.

4. DARMS Interpreter

The DARMS interpreter provided by Brinkman (1990) is used to assign absolute time
values to all DARMS events. The MusicReader interpreter also assigns note volumes
intelligently. The output may be displayed and analyzed. The interpreter is perhaps most
useful in checking the syntax of the DARMS code.

5. MIDI Filemaker

A translation to Standard MIDI files enables the data to be used with most sequencers
and notation programs. The MIDI files are also valuable for data verification.

The DARMS interpretation and MIDI file conversion utilities are supported by an
assembly language editor (available as shareware) in which error messages are displayed
with the lines of text in the editor, facilitating correction.

Program Performance

Program performance varies with the source material. Generally speaking, the
scanning of single-line music with quarter notes or eighth notes, beamed sixteenth and
thirty-second notes, and unbeamed chords is flawless. Individual sixteenth- and thirty-
second notes are harder to identify because of the tails. Rests that occur in staves
containing only one part are usually recognized; they can be troublesome in multipart
music on one staff. Because of the ambiguous nature of white space, half notes and
whole notes are difficult; they are currently recognized about 70 percent of the time.
Either the staffline goes though them, and they look like quarter notes or quarter
noteheads, or they are between stafflines and they become split into two components.
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Clef recognition is difficult. The C-clef is most problematical, followed by the F-
clef; the G-clef is usually recognized. Finally, beam/chord components with a
multiplicity of stemlines going to one component are often misclassified, usually by
presenting too many elements on each stem.

Despite these limitations, many of which are due to the poor quality of the starting
images, we feel that such an analysis is always more efficient than encoding a work in
DARMS alphanumerically, especially since the manually encoded DARMS file will need
to be checked anyway.

Some deficiencies in the current program are inherent in the approach, while others
are readily remedied. The problem of fragmentation of components owes to the use of
the one-pass staffline removal algorithm. Its importance varies with the repertory. It
would be a significant obstacle to a repertory containing a preponderance of half and
whole notes, such as hymns. The problem of multiple stems attached to a single
notehead is one of music representation. It should be capable of solution, perhaps using
graph-based methods. The current program does not recognize text, but we are
implementing a template-matching algorithm that may help. The text algorithm may be
useful for the classifier as well.

Hardware enhancements would include porting to other popular workstations, such
as the Macintosh, NeXT, and Sun SparcStation, and testing with hand-held scanners.

The system is now available for use, and user feedback would be much appreciated.
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Music Score Recognition:
Problems and Prospects

The problem of recognition of music scores has much in common with the
processing of other types of documents (mechanical engineering drawings, circuit
diagrams, maps, and texts containing conventional English characters, Chinese and
Japanese characters, and mixed alphanumerics and graphics [Yamamoto 1993]). Not
only are they all binary (black and white) images but they also contain a mixture of
line segments, characters, and domain-specific symbols. Current thinking in the
document recognition community seems to agree on several key points, namely that
no one recognition technique is going to solve the recognition problem for cases such
as those listed above, that context will play a significant role in any successful
recognition system, and that it would be useful to have not only databases of typical
documents but also appropriate models of image degradation for use in system
development and testing. It is interesting to note that some work on seemingly black
and white originals makes use of the grey-scale image in order to direct the
thresholding process and thereby create a better approximation to the symbol shapes in
the image (Roach 1988, Yamamoto 1993).

While line-finding is a fundamental process in the graphic analysis of many
categories of binary image, music is unique in making use of sets of five roughly
horizontal, parallel, and equidistant lines as its reference grid. Another shared
problem is that of touching symbols. Text annotations of circuit diagrams and
engineering drawings sometimes touch the objects to which they refer; maps
frequently contain touching or intersecting symbols. Music could be said to have this
characteristic but to a greater degree because most symbols will touch or be
superimposed upon the stafflines and, even after symbol isolation (staffline
recognition), symbols which touch or are superimposed will probably remain.

It should be remembered that the first work in the field, undertaken in the late
1960s and early 1970s, was severely limited by hardware (Pruslin 1967, Prerau
1970). Now that computers commonly have sufficient storage capacity to handle
large quantities of data (an 8.5" x 11" page digitized at 300 dots per inch [d.p.i.]
requires about 1 MByte of storage) and enough processing power to undertake
recognition tasks involving such quantities of information, music score recognition has
become purely a software problem. Scanners capable of producing binary images at
300 or more d.p.i. and sophisticated music notation programs are now widely
available and these provide the other ingredients necessary for the development of an
integrated music score recognition system.
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General Problems in Music Recognition

The music fragment shown below will be used to illustrate some of the significant
problems involved in attempting to develop algorithms which can read music notation.
It is important to emphasize that such algorithms need to be generally applicable in order
to be truly useful. It is easy to make assumptions about scores early on in the
development phase which turn out to be untrue upon examination of a wider range of
repertories. This is not purely a criticism of music score recognition research but seems
applicable to work on the other forms of binary image (circuit diagrams, etc.)
recognition, where assumptions are sometimes made in modelling the structure of
symbols which turn out to be inadequate when faced with the degraded images which
exist in the real world. This is particularly the case in industry, where the automatic
conversion into electronic form of old and deteriorating documents is often of particular
interest precisely because the paper-based originals are of poor quality and are therefore
reaching the end of their useful life.

broken stems
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Example 1. J. S. Bach: an extract from the Sonatas and Partitas for Unaccom-
panied Violin (Dover Edition; after original engraving of 1894 by Breitkopf und
Hirtel).

Some of the basic requirements of a score recognition system include coping with
variations in the following image parameters:

1. The size of original. Pocket scores may not have to be read by an automatic
system but a reasonable requirement would encompass sparse instrumental parts
with 6 or 8 staves per page, up to full orchestral scores. Staff height may vary
between, say, 6 and 12mm.
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2. The rotation of the original (the stafflines may be straight but not horizontal).

3. The bowing of stafflines. This is sometimes present in the original due to the
printing process but may be introduced by the use of a hand scanner to acquire
the image or by an intermediate photocopying stage.

4. The presence of noise in the image (either black specks, often referred to as
"salt and pepper" noise, or dropouts, i.e., white patches in symbols which
should be solid black as well as slight variations along supposedly straight edges
due to quantization).

5. Discontinuities such as breaks in stafflines or notestems (see Example 1).
6. Digitizing resolution (commonly 300 d.p.i.).
7. The music symbol font.

To put these requirements in context, it should be noted that omnifont text
recognition in a range of sizes, in particular with touching characters, is still a current
research topic (Yamamoto 1993). In comparison, score recognition requires coping not
only with a range of music sizes, fonts, and distortions but also with the superimposition
of symbols, not to mention the additional need for a built-in omnifont, size-independent
character recognition facility which understands text underlay. Also, the above list does
not include what is probably the most difficult problem in score recognition, i.e., dealing
with superimposed symbols, although it is also a complex process to extract implied
information after symbol recognition has been achieved. This is amply illustrated by
Example 1 with its varying number of voices, superimposed beamed groups, and
staggered simultaneities. A more detailed discussion of the above parameters follows.

Specific Problems

1. Size

In order to process images of varying size, all measurements which are made on the
image need to be relative rather than absolute. This is commonly achieved in current
systems by normalizing all dimensions with respect to the vertical distance between
adjacent stafflines. The other significant issue relating to size is the loss of symbol detail
which occurs in some small scores. This leads to problems for the recognition engine
which are similar to those produced by some instances of noise, poor-quality original
pages where symbols are fragmented, or low resolution digitizing.
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The use of multiple recognition modules, at least one of which would use context,
is a possible solution in order to produce a "best fit" recognition result for an input
image. It would also seem promising to undertake iterative recognition processing,
perhaps in conjunction with a cost-function to direct results towards such a "best fit,"
albeit somewhat daunting to implement. This bears similarity to the annealing process
for automatic layout of printed music described by Byrd (1980).

2. Image Rotation

It is reasonable to assume that the original will only be rotated slightly, at most,
especially if a sheet-fed scanner has been used, but it is important to realize that only
slight rotation is needed in order to render useless those staffline-finding algorithms
which rely on finding horizontal lines. Also, some rotation may be present in the
original image, so regardless of positioning relative to the scanning element, rotation is
still a factor. The technique for staffline-finding must therefore include pre-processing
to rotate the page, where necessary, or otherwise take account of rotation in dealing with
line fragments. This issue is linked to the following parameter because stafflines cannot
be assumed to be straight either (whether horizontal or not), so the staffline-finding
process is forced to use a piecewise technique which permits bowed line fragments.

3. Staffline Distortion (Bowing)

Curvature in music score images, particularly of stafflines, is a source of difficulty
for algorithms which assume that lines are straight. The human vision system has little
difficulty in accommodating such distortions, so the widespread nature of the problem is
perhaps not widely realized. Bowing can also be introduced by the scanning process, for
instance if a hand scanner is used (see Example 2), or by photocopying the original prior
to scanning.

Example 2. J. S. Bach: extract from the Flute Sonata in E Minor
(Bach Gesellschaft; acquisition by hand scanner at 300 d.p.i.).
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4. Noise (Dirt)

Noise in the input image takes various forms. Common examples are the black
specks which appear in white background areas of a score due to the printing process or
variations in the reflectivity of the paper. These need to be ignored by the recognition
system but care must be exercised because similar-sized black regions may, depending
on the position on the page, constitute a faint duration dot or be the sole difference
between an ‘I’ and a ‘t’ in a string of text. Similarly, white specks may appear within
a region intended to be solid black. These alter the structure of the region and also
reduce the effectiveness of a template-matching approach. Another effect which can be
viewed as a form of noise is illustrated in Example 2, where lines vary in thickness.
This is common, sometimes due to the quality of the original but often simply to the
quantization process.

5. Discontinuities

This is a specific form of noise which manifests itself in the form of linebreaks
(stafflines, stems, barlines, tails, etc. can all be affected) as illustrated in Example 1.
This makes line-tracking, or other similar techniques which rely on line continuity,
difficult and necessitates provision for traversing such gaps. It can also make the
detection of line fragments more difficult if these are required to be unbroken.

6. Resolution

It is interesting to examine the amount of information which the human vision system
is able to extract even from a low resolution image. The following illustrations show
resolutions of 37.5, 75, and 150 d.p.i. with a progressive factor of four increase in the
amount of data required to store each image.

It can be seen that the stafflines are readily identifiable even at the lowest resolution.
A treble clef and a one-flat key signature followed by some beamed groups are also
apparent, although a degree of uncertainty exists over most of the pitches. By the use
of context, an eighth-note rest can be identified preceding the first beamed group.

As soon as the resolution is increased to 75 d.p.i., however, the extract can be read
accurately, and 150 d.p.i. seems perfectly adequate for recognition purposes (thus making
300 d.p.i. appear excessive, particularly in view of the fact that it requires 16 times the
quantity of data used by the 75 d.p.i. image).

Alagrs.

37.5 dots per inch resolution
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., At

75 dots per inch resolution

Allegro.
) | ) |8 o —
{— : - —

150 dots per inch resolution

7. Font Variation

The wide variation in music symbols due to different fonts should be apparent from
a typical selection of material from assorted publishers (Fujinaga 1988, p. 78). A score
recognition system has to make its decision as to which symbol is present based on
appropriate font-independent parameters. For instance a full-size treble clef will normally
have a loop extending above the staff and a tail below the staff regardless of its slope,
stroke width or height. Similarly, a bass clef will have two dots on either side of the
F-line regardless of the ornateness of its main body, although detecting these dots may
not be a trivial task.

Conclusion

In summary, some of the parameters which make music score recognition such a
difficult problem have been presented. Progress has been made in coping with some
of these variables, but current systems are still limited in scope. Also, it is still an
open question how much information should be included in the output data file. This
depends on whether it is just the musical content of the original which is being
extracted or if it is also important to retain appearance, i.e., the precise placement and
style of symbols.
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How Practical is Optical Music Recognition
as an Input Method?

Over the academic year 1992-3, Nicholas Carter, a leading researcher in the field of
optical recognition of printed music, was in residence at the Center for Computer
Assisted Research in the Humanities. Since the Center has been at work for almost ten
years in the development of electronic representations of musical works, the
circumstances were conducive to running a fairly well controlled test of the efficiencies
of optical input vis-a-vis the CCARH standard input. This test was run in December
1993.

The Two Approaches

Carter’s recognition program is designed to work with SCORE notation software.
That is, after the score is converted to a bitmapped image, the recognition software
attempts to identify objects and arrange these into a SCORE input file. The file is then
converted to a SCORE parameter file, from which a musical score is printed. Errors are
then corrected and the score is reprinted.

The CCARH system (MuseData; see pp. 11-28) involves realtime entry of pitch and
duration through an electronic keyboard, syntax checking of this input, alphanumeric
entry of information not enterable from a musical keyboard (articulation, dynamics, text
underlay, grace notes and ornaments, basso continuo figuration, etc.), and proofreading,
editing, and reprinting of printed scores. Proof-hearing also plays a major role in the
Center’s data verification process, but since no such operation was included in the optical
recognition test, we discounted it in quantifying the performance of each approach.

Although in the test that was run a common goal—the replication of a single Haydn
symphony—was pursued, there is one overall difference between the systems that could
have a dramatic effect on more extensive comparison. SCORE is designed solely to
capture and replicate an existing score. As an input process in its own right, it is not
intended to facilitate assembly of a score from parts or other more varied approaches to
acquisition. MuseData software can work from a score or from single parts or even from
quite disheveled manuscript sources to a representation that supports not only notation
but also sound output and certain kinds of analytical pursuits. The combination of
SightReader plus SCORE has been aimed from the beginning at republication of
preprinted material, whereas MuseData has from the beginning been aimed at the storage
of musical information in a format hospitable to many and varied uses. Since files are
organized by system and page in SCORE, the original format is replicated exactly in the
recreation. This is not generally true for MuseData, which is organized by part and
movement. Layout can, however, be altered in both systems.
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The Music
The music on which this test was run was the Breitkopf und Hirtel edition (1907) of
Haydn’s Symphony No. 1 (1759). The work was selected and photocopies for both
contestants were made by Dr. Carter.
The work is generally laid out on three systems of six staves each to a page. There
are six parts:
(1) Oboes 1 and 2
(2) Horns in D 1 and 2
(3) First violin
(4) Second violin
(5) Viola
(6) Violoncello and bass

There are three movements:

1. A Presto in cut time 5 pages
2. An Andante in 2/4 2.5 pages
3. A Finale (also marked Presto) in 3/8 2.5 pages

The oboes and horns are omitted in the second movement, which is laid out with five
four-stave systems to a page. Page 8 contains two four-stave systems (end of the
Andante) and two six-stave systems (start of the Finale). The second and third
movements are in binary form. The outer movements are in D Major, while the Andante
is in G Major.

Although the work is one of the musically simplest orchestral pieces by Haydn, it is
not free of notational complexities. These include triple stops, abbreviation signs, grace
notes, triplets, and trill signs in the string parts; polyphonically differentiated passages
on the oboe staff; single notes with opposing stems on the horn staff; and so forth.
Dynamics indicators, staccatos, ties, slurs, rehearsal numbers, and repeat signs are also
present. In the main, however, the work consists principally of eighth and sixteenth
notes, with some quarter, half, and whole notes and their corresponding rests.

The graphic images, while exhibiting many of the phenomena cited in preceding
articles, were of generally good quality in that they are clear, with good contrast of black
and white.

Quantitative Results

Because the unit of measure in SCORE is the page while in MuseData it is the
movement, direct comparison of elapsed time was not immediately possible. We
converted the SightReader page times to movement times by making the following
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assignments: times for pp. 1-5 = Movement 1 (Presto); times for pp. 6, 7, and half of
p. 8 = Movement 2 (Andante); times for half of p. 8 plus pp. 9 and 10 = Movement
3 (Finale).

As an input method, SightReader has only two stages—(1) image acquisition (TIFF)
and conversion to a SCORE input file and (2) screen editing of the provisional score.
The MuseData acquisition process is considerably more involved and requires a total of
10 steps—three (Stage 1) devoted to pitch-and-duration acquisition and syntax checking
and seven (Stage 2) devoted to merging parts, printing a draft score, correcting it, and
reprinting it. Some of these steps are very short and their times are reported only in
summary fashion.

The following respective timings (reported in hours, minutes, and seconds) were
reported:

[ TIFF > SCORE | Handediting |  Total _ ﬂ

0:05:49 5:46:00 I 5:51:49 |
e 0:04:55 2:24:05 2:29:00
0:02:24 1:34:05 1:36:29
|[ ™ Towl 0:13:08 9:44:10 10:07:18

Table 1. Input (SightReader) and editing (SCORE) for the Haydn Symphony No. 1.

[ Movement || Stagel | Stagez |  Total _ “
I |

ud
———{

- PfeStO | 1ss:00 [ 4:24:00 06:19:00
;: . Andante " » 1:20:00 2:52:00 04:12:00
 Finale | 1:05:00 2:04:00 03:09:00
[f: ; ;' Total - ]| 4:20:00 9:20:00 13:40:00

Table 2. MuseData input (Stage 1) and editing (Stage 2) times for the Haydn
Symphony No. 1.

When the MuseData figures are consolidated to resemble the two steps in the
SightReader/SCORE process (Table 3), then it becomes apparent that the MuseData
editing time is marginally faster, but the original acquisition time is inevitably much
slower, since it represents realtime performance, part by part, movement by movement.
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Beginning of the first movement of Haydn’s Symphony No. 1

(MuseData reconstruction).

Example 1.
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Example 2. Beginning of the third movement of Haydn’s Symphony No. 1

(MuseData reconstruction).
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G e e ) =
 Sight/SCORE I 0:13:08 944:10 |  10:07:18
. MuseData " 4:20:00 9:20:00 13:40:00
[__leference | 4oen 0:24:10 03:32:42

Table 3. Comparison of SightReader/SCORE and MuseData systems of input.

It appears that efficient recognition is powerless to speed editing. One question
that prospective users of recognition software must assess for themselves is whether
they are prepared to make the same commitment of time to the editing process after
optical music recognition as they do without it.

Qualitative Results

Judging the aesthetic quality of the output is entirely subjective. SightReader output
resembles the materials shown on pp. 136-7. We reproduce the first pages of the first
and third movements of the Haydn symphony from the MuseData printing system as
Example 1 and 2.

As for accuracy, we originally took both "editions" to have been brought to the level
of 100% accuracy. For the SightReader approach, accuracy consists of complete fidelity
to the original material. This goal was achieved. For MuseData, however, accuracy
consists of a faithful reproduction modified, as conditions warrant, to produce a fully
sensible and workable set of information to be used for diverse applications. Frances
Bennion and Ed Correia from CCARH found two errors in the Breitkopf edition related
to the non-cancellation of accidentals. One case is given in Example 3. Numerous
questions of visual grammar—ambiguous slurs, and so forth—also were encountered.

In the end, users will need to decide for themselves what level of data verification
is required for their applications. A publisher wishing only to reprint a score may
consider it unwarranted to proofread the original material before scanning. A performer
working from an erroneous part or score or a MIDI file listener would undoubtedly
prefer corrected material.

An overriding concern is that since SCORE is a model of completeness in the
information that it represents, users of a scanning program that provides output to a
simpler scheme, such as MIDI, or of limited sets of features (by excluding white notes,
for example) must expect to spend a significantly greater amount of time in
postprocessing than was the case in either instance here.
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Example 3. Bars 74-77 of Movement 1 (Presto) of Haydn’s Symphony No. 1.
In Bar 74 the final note for second violins (Staff 4) was not marked with a
natural in the original edition.

Our test narrowly avoided the inclusion of spurious material (an error that is unlikely
to occur except through the use of scanners). When the symphony was photocopied for
the participants, two pages of another Haydn symphony in the same meter strayed into
the stack of pages representing the Finale. The scanning program was completely
indifferent to this material, but the live data entry specialists found the abrupt change of
key and simultaneous reduction in the number of parts, from 6 to 5, disconcerting. They
investigated and discovered the error. This necessitated revising the results for
SightReader, which originally reported 12 pages of material and an addtional 66 minutes
of processing and editing time, and rerunning the MuseData test for the Finale; the
material was of course more familiar the second time.

The moral is obvious: technology, however sophisticated, is no substitute for
common sense. For the moment, scanning programs don’t investigate; they simply scan.
Even within the domain of manual input, the eye can be deceived. This is why we
regard proofhearing as an essential step in the process of data verification. Old editions
have their share of errors and notational anomalies. Since so much effort is required to
encode musical data in large quantities, the additional human intelligence required to
rectify these seems well worth providing.
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We expect all of the systems represented here to improve dramatically over time.
We also expect optical music recognition to become practical for printing and analysis
applications in due course. In these, as well as in sound applications via MIDI, the
user’s error tolerance and time available for the necessary postprocessing will determine
the point at which use of the technology becomes practical.

We wish to thank Nicholas Carter, Edmund Correia, Jr., and Frances Bennion for
participating in this experiment.

CCARH is willing to make available to other recognition software developers copies
of the materials used in this comparison for the purpose of evaluating the performance
of their programs.
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