
Algorithms for Computing Geometric Measures of Melodic 
Similarity 
Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio
Mesa, Yurai Nunez, David Rappaport, Godfried T. Toussaint

Computer Music Journal, Volume 30, Number 3, Fall 2006, pp. 67-76 (Article)

Published by The MIT Press

For additional information about this article

[ Access provided at 20 Apr 2021 04:56 GMT from Stanford Libraries ]

https://muse.jhu.edu/article/202595

https://muse.jhu.edu/article/202595


Aloupis et al.

Greg Aloupis,* Thomas Fevens,† Stefan Langer-
man,‡ Tomomi Matsui,§ Antonio Mesa,¶ Yurai
Nuñez,¶ David Rappaport,** and Godfried
Toussaint*

*School of Computer Science, McGill University
3480 University Street
Montreal, Quebec, Canada H3A 2A7
{athens,godfried}@cs.mcgill.ca
†Department of Computer Science and Software
Engineering, Concordia University
1455 de Maisonneuve Boulevard West
Montreal, Quebec, Canada H3G 1M8
fevens@cs.concordia.ca
‡ Chercheur Qualifié du FNRS, Département
d’Informatique, Université Libre de Bruxelles
CP212 Boulevard du Triomphe, 1050 Bruxelles,
Belgium
Stefan.Langerman@ulb.ac.be
§Department of Mathematical Informatics
Graduate School of Information Science and
Technology, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
tomomi@misojiro.t.u-tokyo.ac.jp
¶Departamento Ciencias de la Computacion
Facultad de Matematica y Computacion,
Universidad de La Habana
San Lazaro y L, Vedado 10400
Ciudad de La Habana, Cuba
tonymesa@matcom.uh.cu, yurainr@yahoo.com
**School of Computing, Queen’s University
Kingston, Ontario, Canada K7L 3N6
daver@cs.queensu.ca

Algorithms for Computing
Geometric Measures of
Melodic Similarity

67

We have all heard numerous melodies, whether they
come from commercial jingles, jazz ballads, operatic
arias, or any of a variety of different sources. How a
human detects similarities in melodies has been
studied extensively (Martinez 2001; Hofmann-Engl
2002; Müllensiefen and Frieler 2004). There has
also been some effort in modeling melodies so that
similarities can be detected algorithmically. Some
results in this fascinating study of musical percep-
tion and computation can be found in a collection
edited by Hewlett and Selfridge-Field (1998).

Similarity measures for melodies find application

in content-based retrieval methods for large music
databases such as query by humming (QBH) (Ghias
et al. 1995; Mo, Han, and Kim 1999) but also in
other diverse applications such as helping prove
music copyright infringement (Cronin 1998). Previ-
ous formal mathematical approaches to rhythmic
and melodic similarity, such as the one taken in this
article, are based on methods like one-dimensional
edit-distance computations (Toussaint 2004), ap-
proximate string-matching algorithms (Bainbridge
et al. 1999; Lemström 2000), hierarchical correla-
tion functions (Lu, You, and Zhang 2001), two-
dimensional augmented suffix trees (Chen et al.
2000), transportation distances (Typke et al. 2003;
Lubiw and Tanur 2004), and maximum segment
overlap (Ukkonen, Lemström, and Mäkinen 2003).
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Ó Maidín (1998) proposed a geometric measure of
the difference between two melodies Ma and Mb. The
melodies are modeled as monotonic pitch-duration
rectilinear functions of time, as depicted in Figure 1.
This rectilinear representation of a melody is equiv-
alent to the triplet melody representation in Lu,
You, and Zhang (2001). Ó Maidín measures the dif-
ference between the two melodies by the minimum
area between the two polygonal chains, allowing
vertical translations. The area between two polygo-
nal chains is found by integrating the absolute value
of the vertical L1 distance between Ma and Mb over
the domain Q. Arkin et al. (1991) show that the
minimum integral of any distance Lp (p ≥ 1) between
two orthogonal cyclic chains, allowing translations
along Q and z, is a metric.

In a more general setting such as music retrieval
systems, we might consider matching a short query
melody against a larger stored melody. Furthermore,
the query can be presented in a different key (trans-
posed in the vertical direction) and in a different
tempo (scaled linearly in the horizontal direction).
Francu and Nevill-Manning (2000) compute the
minimum area between two such chains, taken over
all possible transpositions. They do this for a con-
stant number of pitch values and scaling factors, and
each chain is divided into m and n equal time steps.
They claim (without describing in detail) that their
algorithm takes O(nm) time, where n and m are the

number of unit time-steps in each query. This time
bound can be achieved with a brute-force approach.

In some music domains such as Indian classical
music, Balinese gamelan music and African music,
the melodies are cyclic, i.e., they repeat over and
over. In Indian music the rhythmic cycles (meter)
are called talas (Morris 1998), and in the music of
north Bali they are called lambatan (Ornstein
1971). If timbre is added to the talas in the form of
drum sounds we obtain what are called thekas,
which may be considered in effect as cyclic
melodies (Clayton 2000). Such cyclic melodies are
also a fundamental component of African and Bali-
nese music (Montfort 1985). Although the un-
trained listener may assume that African drumming
is not melodic, this is far from the truth. In the
words of A. M. Jones, “the drums are not merely
beating time, for each note has to be beaten on its
own correct pitch” (Jones 1954). Furthermore, in
the Afro-Cuban Batá drumming, where several
double-skinned drums are used, the skins are tuned
so that the melodies may use tones and even semi-
tones (Nodal 1983). Indeed, African and Afro-Cuban
Batá drums produce cyclic melodies. Of course, in
much of the Balinese music the cyclic melodies are
played on gamelans, in which the metal pieces are
even more finely tuned (Carterette and Kendall
1994).

Two such cyclic melodies can be represented by
orthogonal polygonal chains on the surface of a
cylinder, as shown in Figure 2. This is similar to
Thomas Edison’s cylinder phonographs, where mu-
sic is represented by indentations around the body
of a tin foil cylinder.

This article is an extension of the material pre-
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Figure 1. The first two
measures of a well-known
melody are shown below
our representation using
an orthogonal polygonal
chain.

Figure 2. Two orthogonal
periodic melodies.
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sented in Aloupis et al. (2003). We describe two al-
gorithms to find the minimum area between two
given orthogonal melodies, Ma and Mb, of size n and
m, respectively (n > m). Here, n (or m) is the number
of non-vertical edges in the polygonal chain repre-
sentation. The algorithms can be used for cyclic
melodies as well as in the context of retrieving
short patterns from a database (open planar orthogo-
nal chains). Apart from minor details, there is no
difference between the cyclic and open cases. We
have chosen to describe the algorithms for the case
where the melodies are cyclic. The first algorithm
assumes that the Q direction is fixed, and it runs in
O(n) time. The second algorithm finds the mini-
mum area when both the z and Q relative positions
can be varied. We prove that it runs in O(nmlogn)
time. In each case, we assume that the edges defin-
ing Ma and Mb are given in the order in which they
appear in the melodies. Finally, we discuss natural
extensions, both for the polygonal description of
melodies and for different types of queries.

Minimization with Respect to z Direction

In the first algorithm, we will assume that both
melodies are fixed in the Q direction. Without loss of
generality, we will assume that melody Ma is fixed
in both directions, so all motions are relative to Mb.

To see how the area between the two melodies
changes as Mb moves in the z direction, consider a
set of lines defined by all vertical edges of the
melodies as shown in Figure 3. This set of lines par-
titions the area between the melodies into rectan-
gles Ci (i = 1, . . . , k), each defined by two vertical

lines and two horizontal edges (one from each
melody). Note that k is at most n + m. The area be-
tween Ma and Mb is the sum of the areas of all Ci. If
Mb starts completely below Ma and moves in the
positive z direction, then for any given Ci the lower
horizontal edge (from Mb) will approach the upper
fixed horizontal edge, while the area of Ci decreases
linearly. This happens until the horizontal edges are
coincident and the area of Ci is zero. Then the upper
horizontal edge (now from Mb) moves away from
the lower fixed horizontal edge, while the area of Ci

increases linearly.
We will consider the vertical position of Mb to be

the z-coordinate of its first edge. We define z = 0 to
be the position where this edge overlaps the first
edge of Ma. Let Ai(z) denote the area of Ci as a func-
tion of z. Define zi to be the coordinate at which
Ai = 0. These k positions of Mb where some Ai be-
comes zero are called z-events. The slope of Ai(z) is
determined by the length of the horizontal edges of
Ci. The total area between Ma and Mb is given by

Note that because A(z) is the sum of piecewise-
linear convex functions, it too is piecewise-linear
and convex. Furthermore, its minimum must occur
at a z-event.

The function A(z) is given by

where zbi is the vertical coordinate of Mb in Ci,
zai corresponds to Ma, and wi is the weight (width) of
Ci, as shown in Figure 3. Let ai denote the vertical
offset of each horizontal edge in Mb from zb1. Thus
we have zbi = zb1 + ai, and A(z) is now given by

A z w z zi bi ai( ) | | ,= −∑

A z A zii
k( ) ( ).= =∑ 1
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Figure 3. Contribution of
C4 to area calculation.



Finally, notice that the term zai – ai is equal to zi.
Thus, we obtain

This is a weighted sum of distances from zb1 to all
the z-events. The minimum is the weighted uni-
variate median of all zi and can be found in O(k)
time (Reiser 1978). This median is the vertical coor-
dinate that zb1 must have so that A(z) is minimized.
Once this is accomplished, it is straightforward to
compute the sum of areas O(k) in time. Recall that
k is at most n + m; therefore, a minimum of A(z) can
be computed in O(n) time.

Minimization with Respect to z and Q Directions

If no vertical edges among Ma and Mb share the same
Q coordinate, then Mb may be shifted in at least one
of the two directions ±Q so that the sum of areas
does not increase. This means that to find the global
minimum, the only Q coordinates that need to be
considered are those where two vertical edges coin-
cide. Thus, our first algorithm may be applied O(nm)
times to find the global minimum in a total of
O(n2m) time. We now propose a different approach
to improve this time complexity.

As described in the previous section, for a given Q,
the area minimization resembles the computation
of a weighted univariate median. When we shift Mb

by DQ, we are essentially changing the input weights
to this median. Some Ci grow in width, some be-
come narrower, and some stay the same width. As
we keep shifting, at Q coordinates where vertical
edges coincide, we have the destruction of a Ci and
creation of another Ci. An important observation is
that all Ci grow (or shrink) at the same rate.

Let us store the z-events and their weights in the
leaves of a balanced binary search tree. Each leaf
represents one Ci. The leaves are ordered by the
value zi. Each leaf also has a label to distinguish be-
tween the three types of Ci: those that are growing,
shrinking, or unaffected when Mb is shifted infini-
tesimally in the positive direction. At every node
with subtree T, we store WT (the sum of weights of

A z w z zi i b( ) | | .= −∑ 1

A z w z zi b ai i( ) | ( ) | .= − −∑ 1 � all leaves in T) and D (the number of growing leaves
minus the number of shrinking leaves in T). The
weighted median of all zi can be calculated by tra-
versing the tree from root to leaf, always choosing
the path that balances the total weight on both
sides of the path. The time for this is O(logk).

Suppose that we shift Mb by some offset DQ,
which is small enough such that no vertical edges
overlap during the shift. Each wi belonging to a
growing leaf must be increased by DQ, and each wi

belonging to a shrinking leaf must be decreased by
this amount. Instead of actually updating all our in-
puts, we just maintain a global variable DQ, repre-
senting the total offset in the Q direction. The total
weight of a subtree T is now WT + DDQ.

When we shift to a position where two vertical
edges share the same Q coordinate, we potentially
eliminate some Ci, create a new Ci, or change type of
Ci. The number of such changes is constant for each
pair of collinear vertical edges. The weight given to
a created leaf must equal –DQ. Each of these changes
involves O(logk) work to update the information
stored in the ancestors of a newly inserted, deleted,
or altered leaf. There are O(nm)such instances
where this must be done and where the median
must be recomputed, so the total time to compute
all candidate positions of Mb is O(nmlogn).

At every Q coordinate where we recalculate the
median, we also need to calculate the integral of
area between the two melodies. For a given median
z*, the area summation for those Ci for which z* > zi

has the form ∑wi(z* – zi). This can be calculated in
O(logk) time if we know the value of this summa-
tion for every subtree. To do this, we store some ad-
ditional information at every subtree T. Specifically,
the area is given by

where in the second summation, I takes the values
(+1, 0, –1) for growing, unchanged, and shrinking
leaves, respectively. These two summations are the
additional parameters that need to be stored, and
they can be updated in O(logk) time at every critical
Q coordinate. We must also perform a similar O(logk)
time calculation of ∑wi(zi – z*) for all zi > z*. No ad-
ditional parameters are needed for this.

Thus, at every critical Q position, we can calculate

z W D w z IzT i i i∗ + − − ∑∑( ) ( ) ,�� ��
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the median and integral of area in O(logk) = O(logn)
time. This implies that a relative placement such
that the area between the melodies is minimized
can be computed in O(nmlogn) time.

The analysis above can be used to obtain the same
result for the problem of matching two planar or-
thogonal monotonic open chains. Clearly, if we are
interested in varying only one direction, an optimal
placement can be found in linear time. If the direc-
tion of monotonicity is the x-axis, then this prob-
lem is more interesting if one of the two chains has
a shorter projection onto the x-axis. This “shorter”
chain reminds us of a short motif that we might
search for in a larger database of music. For this
problem, we measure area only within the common
domain of the two chains along the x-axis. Natu-
rally, the projection of the shorter chain must be en-
tirely covered by the projection of the longer chain.

Arkin et al. (1991) showed that two polygonal
shapes can be compared by parameterizing their
boundary lengths and examining their orientation
differences. They showed that their measure, which
is invariant to scaling, rotation, and translation, can
be computed by finding the minimum integral of
the vertical distance between two orthogonal chains,
which are constructed in a preprocessing step. In
fact, some of their techniques are similar to those
given in this section. However, they chose to use
the L2 distance (as opposed to the L1 distance used
here), for which the optimal z-position at any Q can
be computed in O(1) time. The complexity of their
algorithm is dominated by sorting the O(nm) criti-
cal Q events. They indicated that their algorithm of-
fers no improvement over a O(n3) time brute-force
approach for the L1 metric.

Extensions

Higher Dimensions

Consider a simple orthogonal open chain that is
monotonic with respect to the x-axis. Furthermore,
at any particular x-coordinate, suppose that the
chain has at most two edges (in the y and/or z direc-
tions). This is an extension of the melody represen-
tation that we have seen so far. The x-axis still

represents time, but now the other axes might rep-
resent pitch, loudness, timbre, or chord density. In
the plane, the measurement made was an integral
of the pitch (height) difference taken over a domain
in the x-axis. Here, we still wish to minimize an in-
tegral of the distance between two chains over all
common x coordinates. Whether this should be
computed as a Euclidean distance or perhaps the L1

distance is debatable; the latter is definitely easier
to compute.

Suppose that we allow motions of the chains Ma

and Mb only in the y and z directions. Minimizing
the sum of pair-wise Euclidean distances is equiva-
lent to the Weber problem, which involves finding a
point with minimum sum of distances to points in
a given set. It is not possible to find an exact solu-
tion to the Weber problem (also known as the gener-
alized Fermat-Torricelli problem; see Groß and
Strempel 1998). Using the L1 metric, we want to
minimize the function

This can be split into a sum of two terms:

Thus, we need to perform only two univariate me-
dian computations to find the optimal (y, z) place-
ment for a particular relative position of the two
chains in the x direction. In d dimensions, we can
accomplish this task in O(dn) time. The decoupling
of the two coordinates allows us to update each
median separately at every critical x coordinate.
In three dimensions, there are still O(nm) critical
x coordinates and O(n + m) weights/leaves, so the
time complexity is the same as for planar chains. If
we let n and m be the total number of edges parallel
to the x-axis for two chains, then in three dimensions
the time complexity becomes O(nmdlogn), using
O(dn) space. Note that only these edges are signifi-
cant in any of the computations we have made so far.

Scaling

Here we consider the effect of scaling planar chains,
either in the vertical or horizontal directions. If we
shrink the shorter chain horizontally, the domain of

w z z w y yi bi ai i bi ai| | | | .− + −∑∑

w z z y yi bi ai bi ai(| | | |).− + −∑

71



the integral becomes smaller, so the total area will
tend to zero eventually. How should we deal with
this? It seems reasonable to normalize by comput-
ing the total area over the domain of the smaller
chain. It is equivalent to fix the shorter chain at unit
domain length and modify the larger chain instead.
Its domain would expand from unit length to some
value where its narrowest strip has unit width.

Let an “x-value” be an x-coordinate where there are
vertical edges from both chains. For a particular scal-
ing value, we know that the optimal placement of the
larger chain occurs when we have an x-value. This
follows from the arguments given in the second sec-
tion of this article. Suppose that somehow we know
the optimal scaling factor, and assume that there is
only one x-value and that we know which two verti-
cal edges are aligned. Now, we can keep scaling the
large chain while using the x-value as an “anchor.”
One of the two scaling directions will improve the
area minimization, at least until we obtain another
x-value. Thus, for the scaling method proposed
above, the optimal scaling of the larger chain occurs
at a position where two or more x-values occur.

This means that we have O(n2m2) candidate con-
figurations for the larger chain. Thus a brute-force
algorithm to find the optimal configuration (and
vertical position) would take O(n3m3) time using
O(n) space. Our result also applies to vertical scal-
ing. In this case a brute-force algorithm would have
a time complexity of O(n3m3logn), because we
would search along Q for every scaling factor that
aligns two pairs of horizontal edges.

Non-Orthogonal Chains

In the preceding sections, it was assumed that a
melody can be divided into intervals, and within
each interval the pitch (or volume/timbre) remains
constant. In a more general setting, these features
may vary within each interval. Non-orthogonal
chains are relevant in a variety of contexts. In many
types of music, we must consider melody in a more
general sense than the discrete, static pitches of
MIDI or common music notation. This is particu-
larly true for example in Flamenco music and In-
dian music, in which the expressiveness of the

voice plays an important role. A continuous change
in pitch also reflects effects such as glissandi in
Western classical performance. In such applica-
tions, continuous pitch variation is important (Bat-
tey 2004). Furthermore, in other applications such
as signal-to-score music transcription and pitch
tracking in real-time interactive improvisation
systems, the input is continuous (Dobrian 2004;
Kapanci and Pfeffer 2005).

A further step in this direction is to consider mo-
notonic piecewise linear chains. Consider two such
planar chains. Let us divide the plane into strips,
just as we had for orthogonal chains. In this case, a
vertical boundary is placed at every vertex, as
shown in Figure 4.

Within every strip, we have two linear segments.
Suppose we vary only the relative pitch of the chains.
As one chain is moved down from infinity, the area
within a given strip decreases linearly until the two
segments touch inside the strip. Then the area de-
creases quadratically until the midpoints of the seg-
ments intersect. Of course, the reverse occurs as we
keep moving the chain down. The overall area func-
tion of each strip Ci is now a symmetric convex
function, which is part linear and part quadratic
(around the symmetric point). The total area is a
sum of n functions, such as those shown in Figure 5.

The area function is convex and piecewise quad-
ratic with O(n) inflection points. Specifically, an
inflection point will exist in the aggregate function
only at a coordinate where some individual func-
tion changes from linear to quadratic. There are two
such points per individual function. Note that the
minimum of the aggregate function need not occur
at an inflection point, unlike the case of orthogonal
chains. Now, it is possible for the minimum to exist
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Figure 4. Two monotonic
chains and their strips.
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between two consecutive inflection points. This
would be the only region between two successive in-
flection points where the function is not monotonic.

To compute the minimum of the aggregate func-
tion, we give the following algorithm:

1. Let R be the set of individual area functions.
Let F be a single quadratic term, initialized
to zero.

2. Compute Q1, the median of the x-coordinates
of the minima of all functions in R, as shown
in Figure 6.

3. Compute the value and gradient of the total
area function at Q1 by querying F and all

functions in R. If not at the global mini-
mum, assume without loss of generality that
the minimum is to the left of Q1.

4. For the subset of functions in R whose min-
ima are to the right of Q1, compute the me-
dian Q2 of their left inflection points. Q2

splits the subset into the left group and the
right group.

5. If Q2 ≥ Q1, as shown in Figure 7, replace all
functions in the right group with a single lin-
ear term, which is a summation of all indi-
vidual left-hand linear terms. Update F by
adding this term to it. Remove the right
group from R.

73

Figure 5. A set of area func-
tions from the Ci strips.
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6. Otherwise, if Q2 < Q1, as shown in Figure 8,
compute the gradient of the total function at
Q2. If the global minimum is to the left of
Q2, follow the instructions of step 5 on the
right group. Otherwise, if the minimum is
between Q2 and Q1, replace all functions in
the left group with a single quadratic term,
which is a summation of all individual quad-
ratic terms. Then update F and remove the
left group from R.

7. Go to step 2.

The algorithm performs O(|R|)work during each
iteration, and a constant fraction of R is removed
each time. The total time is O(n), by a simple geo-
metric series summation, as given in Cormen et al.
(2001). Thus, in linear time we can compute the
minimum area between two chains monotonic in x,
found over all vertical translations.

Updating the aggregate function as we shift one of
the chains along the x-axis appears to be non-trivial.
It is no longer true that the optimal position must
occur when vertices from each chain are aligned
vertically. Also, when we make a small shift along
the x-axis, not only do the two linear parts of each
individual function change slopes, but the center of
symmetry of each function may also shift. (Recall
that these are functions of the z-coordinate.) These
changes depend on the slopes of our chains within
each strip and are not difficult to compute on an in-
dividual basis. However, understanding their aggre-
gate effect is a different matter. To rephrase, each
strip now has three “z-events” instead of one: the
two boundaries between linear and quadratic forms,
plus the center of symmetry. To make things worse,
the z-events change position as a chain is shifted
along Q. Thus, if a tree is used to maintain the me-
dian, it will be necessary not only to insert/delete
leaves but also to rearrange the order of leaves (to
say the least).

Integer Weights/Heights

Now, we discuss the cases where only certain pitches
(heights) and/or weights are allowed. If there are O(1)
height differences allowed, we can sort all critical

points in O(nmlogn) and sweep along each height
difference horizontally, updating the area function
in O(1) time per critical point (i.e., O(nm) per height
difference). As a result, the time complexity is dom-
inated by the sorting step. Even in the simplest
case, where we just wish to compute the minimum
area while keeping z fixed, we do not know how to
avoid sorting all critical positions.

If all weights are equal (i.e., we have evenly spaced
sampling of melodies), then each median computa-
tion takes O(m) time, and there are O(n) critical po-
sitions. Thus, a brute force approach takes O(nm)
time. A direct implementation of our tree algorithm
would take O(nmlogn) time, because at each of the
O(n) critical positions we would have to update all
O(m) leaves of our tree. It is possible that this can
be greatly improved.

Conclusion

We have given efficient algorithms for computing
the minimum area between two polygonal chains,
which is a known method of comparing melodies.
Other sweep-line algorithms for melodic similarity
exist (e.g., Ukkonen, Lemström, and Mäkinen 2003;
Lubiw and Tanur 2004); however, ours is designed
to handle a continuous spectrum of pitch and time.
We do not assume a fixed set of allowed pitches or
time differences. On the other hand, we do assume
that the input melodies are monophonic. Extending
these methods to polyphonic music and arbitrarily
complex pitch functions are interesting challenges
for future study.
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