Optical Music Recognition and Data Import/Export

MUSIC 253/ CS 275A
ELEANOR SELFridge-field
Optical recognition for text

Reliable to roughly 96-99% for Roman alphabet

- **Good** when
 - Content is even and regular
 - Scanning is carefully fed
- **Less good** when
 - Text is uneven or irregular
 - Scanning is sloppy
- **Rarely (?) useful** for
 - Non-Roman texts (Cyrillic, Hindi, Mandarin, et al.)
 - Handwriting
Optical Recognition for Music

- Graphical imperfections in musical sources
- Layered contexts
- Output formats
 - MIDI
 - Other
- Evaluation techniques
- Diversity of musical textures and styles
Optical Music Recognition (OMR)

History of efforts from c. 1968
- CCARH survey in 1993-4: 37 projects, 7 responses

Why is optical recognition difficult?
- **Semantic meaning** of many objects depends on graphical context more than shape

Sources and their legibility:
- **Manuscripts**: very irregular
- **Out-of-copyright prints**: images often deteriorated
- **In-copyright prints**: not legal to copy
- **Errors** in source

Biggest problems for OMR developers
- **Superimposition** of objects in 2D image
- Constraints imposed by **output**
Basic problems in optical data acquisition
How does OMR work?

Separation of HORIZONTAL lines from other matter

Isolation of objects

Recognition of objects

Export to a format for
 - storage
 - printing
 - sound
 - data interchange

Missed: slurs, pedal marks
Why are good results elusive?

Problems of image quality:
- Ideally
 - Staff lines are straight
 - Spacing is uniform
 - The scanned material is clean (unspotted)
 - Slurs are symmetrical
 - Beams are parallel
 - All lines are unbroken
 - Reality is different!

Problems of graphical context

Unread symbols affect interpretation of pitch
- Key signatures
- Octave alterations

Symbols affect interpretation of duration
- Meter signatures
- Tempo indicators
- Fermatas

Symbols relating to dynamics or technique
- Dynamics marks
- Repetition of note-groups, of sections
- Instrumental technique
Other difficulties in CMN (common western notation)

Multiple configurations for same objects

Methods of evaluation and control

Musical accuracy?

Handicaps for post-processing

Controls for input quality

Comparison of output formats

Weighing speed against accuracy and usability

- Work of Ichiro Fujinaga, McGill (c1988)
Graphic flaws in conventionally typeset music

Surface imperfections

1. Visual surface problems

![Figure 1. Surface imperfections: skewing and ambiguous positioning (uppermost note).](image)

Surface imperfections

![Figure 2. Surface imperfections: note the broken staff line at the top right and the variable width of both staff- and barlines.](image)

Haydn: Symphony No. 1 (1895) [out-of-copyright edition]
Close-up views (2)

Missing contextual information

Figure 3. **Insufficient information:** The half note and the natural sign both lack closure. Compare the hypothetical white space in the half note with the actual white space bordered by the stem, the notehead, and the contingent flag in the tied octaves of Figure 4.

Graphic imperfections

Figure 4. **Flawed information:** The eighth notes on the first beat are incompletely filled. Note the variable distance between the staccato dots and the notes to which they pertain.
Dirt

Variable appearance of equivalent objects
Close-up views (4)

Touching objects

Figure 7. *Superimposition*: slurs touch noteheads. Note also that the flag of the first eighth note crosses a leger line.

Unconventional presentations

Figure 8. *Issues in music representation*:
SharpEye: File operations

- Comes from Shetland Islands
- Source code available
- Exports to MusicXML

Four-step process:
- **Capture** a page image
- **View** the auto-image
- **Correct** the image
- **Save/export** the result

Vis-à-vis MuseData:
- SE: score-based
- MD: part-based
OTR benefits from side-by-side capture.

Deutsche Textarchiv: Max Planck, Readings on Thermodynamics (1897)
Step 1: Select a portion the score to edit

What SharpEye thought it saw

What SharpEye scanned

Edit mode:
- Captured image below
- Interpreted image above
- Live object in red
- Available symbols in red
SharpEye: Scroll view
A word on NIFF: Note Image FF pixel-based c1996 (MS)
Important questions about OMR software

http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=11836
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=118363

What output formats are available?
- MIDI-level features only?
- Graphical position?
- Markup?

OMR forum: WoRMS

http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=118363

Music Reading Systems, incl. OMR
Innovations

• End-to-end document capture
 • https://archives.ismir.net/ismir2017/paper/000034.pdf

Figure 3. Conceptual scheme of the proposed approach. The input score is processed with a series of convolutional filters; the resulting features are then processed by the recurrent layers to model the temporal context of the piece; a frame-wise transcription using CTC is performed to obtain the estimation in an end-to-end fashion.
Graphical-musical categories

Pixel-level foreground/background differentiation

(a) Input image (b) Binarization (c) Text detection (d) Staff-line detection

<table>
<thead>
<tr>
<th>11x11</th>
<th>25x25</th>
<th>51x51</th>
<th>75x75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Background Text Symbol Staff line
HOMUS dataset for hand-written music

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Writer 1</th>
<th>Writer 2</th>
<th>Writer 3</th>
<th>Writer 4</th>
<th>Writer 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HMM vs **NN**

IEEE Explore 2014
OMR Review article: Levels of structural complexity (2020)

(a) Monophonic

(b) Homophonic

(c) Polyphonic

(d) Pianoform
Calvo-Zaragosa, Hajic, Pacha, 2020
ACM Computing Surveys

https://dl.acm.org/doi/pdf/10.1145/3397499
PlayScore 2 for mobile devices; Maestria

PlayScore 2 Sales pitch: https://www.playscore.co/

v. 2.8 in beta can currently be used for free.

Maestria (from Newzik) prepub pitch

Addendum: “Fly me to the moon”

Written score vs. performance

https://www.youtube.com/watch?v=HJuZUBJtWUo