Using Musical Information

MUSIC 253/CS 275A 1B STANFORD UNIVERSITY

1. Classifying Data Domains

Visual domain

oscores, parts

Aural domain

performances, recordings

Logical domain

analytical data sets

Cognitive/perceptual domain

how we hear/understand music

2. Granularity of information

Data for interchange

Data for classification

A comparision of three view modes:

Blend View

Satellite View

Click image for a larger view

DEM View

Data for **form** analysis A comparision of different resolution:

Data for **feature** analysis

20km resolution

1km resolution

50m resolution

3. Information for comparison

Identity #1:

The atmospheric nitrogen map of the US

Background=US

Identity #2:

The ground nitrogen map of the US

Background=US

3. Information for comparison:

What is in the foreground?

Identity #1:

The atmospheric nitrogen map of the US

Background=US

Identity #2:

The ground nitrogen map of the US

Background=US

4. Musical features of one note

Many features used only selectively

Violin

4. Musical features of one note

Many features used only selectively

Two are **fundamental**:

Pitch Duration

Violin

4. Musical features of one note

Contextual information (notation)

Contextual information (metadata, aural ambience)

5. Musical features by domain

Articulation

Dynamics, Gesture

5. Domain conflicts (symbols vs sound)

Continuous vs static features

Articulation: many sound events prescribed in one symbolic figure

Dynamics, Gesture: reduced to symbols in writing but may operate on continuum

6. Data beyond time (Beyond MIDI #2)

Time-stealing "durations"

Arpeggios
Grace notes (single, multiple)
Staccatos

7. Gestural data (examples)

Choreography: (L) Labanotation, (M) French dance c1700,

(R) Ballet

Labanotation

- •Rudolf Laban (1879-1958), Hungarian
- Aimed to study dance in a "scientific" way through

Laban movement analysis

Labeling parts of the body

Labanotation

- •Rudolf Laban (1879-1958), Hungarian
- Aimed to study dance in a "scientific" way through

Laban movement analysis

- Labeling parts of the body
- Basic directional signs
- 27 directional signs (3D)

8. Score organization

Types 1a, 1b (Beyond MIDI #1)

Score-major systems

Part- major systems

Page-traversal dilemmas

9. Score organization

Type 2 (Beyond MIDI #2)

The "grand staff"

The grand staff as a single instrument

10. Sound features not in notation

Sound decay

http://www.youtube.com/watch?v=WdGQulTuwiQ

[from Stephen Malinowski's Music Animation Machine]

11. The GUIDO *NoteServer* (ASCII input)

Developed by Holger Hoos et al at the Fraunhofer Institut, Darmstadt, 2000-04] Zoom 50% [c0/4 d0/4 e0/4 c0/4 c0/4 d0/4 e0/4 c0/4] 3. Stored data 2. Symbol 1. Sound auto load page settings rest send

Find method for entering: pitch, inflection, octave

http://www.noteserver.org/

Guido input: Pitch and Duration

Feature definition and grouping

