
MusicXML for Notation and Analysis

chae

MusicXML is intended to represent common western musical notation
from the seventeenth century onwards, including both classical and
popular music. MusicXML is intended to support interchange
between musical notation , performance, analysis, and retrieval
applications . It is designed to be sufficient , not optimal , for these
applications .

YSIS

8

Mi, ~l Good

Recordare

PO Box 3459

Los Altos , CA 94024

good @recordare .com
www . m us i cx mI . 0 rg /x mI . h tm 1

Abstract

COMPUTING IN MUSICOLOGY 12 (1999-2000), 113-124.

GOOD: MUSICXML FOR NOTATION AND ANAL 113

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

2 I wish to thank Eleanor

Selfridge-Field, Walter B.
Hewlett, Barry Vercoe,
and David Huron for
their advice,
encouragement, and
prior work in musical
score representanon.

114 COMPUTING IN MUSICOLOGY 12

1 An abstract of this

paper was presented as a
poster at the
International Symposium
on Music Information
Retrieval MusicIR

(October 2000).

usicXML is an XML -based music -interchange language .1 It is

intended to represent common western musical notation from

the seventeenth century onwards , including both classical and

popular music . The language is designed to be extensible to future

coverage of early music and less standard notational needs of twentieth

and twenty - first century scores . (Non -western musical notations would

probably be best represented through a separate XML language .)

MusicXML is intended to support interchange between musical notation ,

performance , analysis , and retrieval applications . It is therefore designed

to be sufficient , not optimal , for these applications . MusicXML is not

intended to supersede other formats that are optimized for specific

musical applications , but to support sharing of musical data between

applications . The development goal is to support interchange with any

musical program for western notation with a published computer data
format .

The current MusicXML converter software runs on Windows. As of

October 2000 , it reads from :

. MuseData format

. Finale's Enigma Transportable File (ETF) format (Coda 1998)

. NIFF format

The current MusicXML software writes to :

. MuseData format

. Standard MIDI Files in Format 1 (MIDI 1997), .

. The S ibelius 1.3 and Finale 2001 notation applications

MusicXML software currendy provides complete coverage for both

reading and writing MuseData files , and partial coverage of the other

formats and applications . The NIFF , ETF , and MIDI converters use
XML versions of these formats as intermediate data structures .

MusicXML adapts the MuseData and Humdrum formats to XML , adding
features needed to cover more of music usage from the mid -nineteenth

century to the present time .2 These were chosen as starting points because

they are two of the most powerful languages currently available for

musical analysis and interchange . One of Humdrum 's important features

is its explicitly two -dimensional representation of music by part and by

time . A hierarchical representation like XML cannot directly support this

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

8.1 A Sample MusicX ~IL Encoding

type of lattice structure , but automatic conversion between these two

orderings is an adequate alternative . MusicXML uses Extensible Style
Sheet Transformations (XSL 1') to convert between two hierarchical

representations : apart -Wtse score where measures are nested within parts,
and a ftme-wise score where parts are nested within measures.

GOOD: MUSICXML FOR NOTATION AND ANALYSIS 115

To give a flavor of MusicXML , here is an encoding of the beginning of

the voice part of Robert Schumann ' s Ope 35 setting of Kerner ' s " Frage , "

illustrated in Figure 1 .

Figure 1 . Robert Schumann , start of the setting of Kerner ' s " Frage " and its

representation in MusicXML .

Langsam , innig .

Warst do nicht , heil ' - ger -

< ? xml version = " 1 . 0 I ' standalone = " no " ? >

< ! DOCTYPE score - partwise PUBLIC

II - I IRecordarel IDTD MusicXML partwisel IEN "

" http : I Iwww . musicxml . org / dtds / partwise . dtd " >

< score - partwise >

< part - list >

< score - part id = " P1 " >

< part - name > Voice < / part - name >

< / score - part >

< / part - list >

< part id = ' I Pl " >

< measure n \ lmber = " 0 " implicit = " yes II >

< attributes >

< divisions > 4 < / divisions >

< key >

< fifths > - 3 < / fifths >

< mode > major < / mode >

< / key >
.

< t1 . me >

< beats > 2 < / beats >

< beat - type > 4 < / beat - type >

< / time >

< clef >

< sign > G < / sign >

< line > 2 < / line >

< / clef >

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

innig . < / directive >

116 COMPUTING IN MUSICOLOGY 12

<directive >Langsam ,
</ attributes >
<note >

<pitch >
<step >G< / step >
<octave >4< / octave >

</ pitch >
<duration >2< / duration >
<type >eighth </ type >
<stem >up </ stem >
<notations >

<dynamics >
<pi >

< / dynamics >
</ notations >
<lyric >

<syllabic >single < / syllabic >
<text >Wäirst < / text >

< / lyric >
</ note >

</ measure >
<measure number = " l " >

<note >
<pitch >

<step >F< / step >
<octave >4< / octave >

< / pitch >
<duration >3< / duration >
<type >eighth < / type >
<dot / >
<stem >up < / stem >
<lyric >

<syllabic >single < / syllabic >
<text >du < / text >

< / lyric >
< / note >
<note >

<pitch >
<step >E< / step >
<alter >- l < / alter >
<octave >4< / octave >

< / pitch >
<duration >l < / duration >
<type >16th < / type >
<stem >up </ stem >
<lyric >

<syllabic >single < / syllabic >
<text >nicht , < / text >

< / lyric >
< / note >
<note >

<pitch >
<step >E< / step >
<alter >- l < / alter >
<octave >4< / octave >

< / pitch >

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

MusicXML score flies do not represent presentation concepts such as
pages and systems. The details of formatting will change based on
different paper and display sizes. In the XML environment , formatting
is handled separately from structure and semantics. The same applies for

number = " l " / >

number = " l " / >

GOOD: MUSICXML FOR NOTATION AND ANALYSIS 117

</ lyric >-
< / note >
<note >

</ lyric >
</ note >
<note >

< / note >
< / measure >

</ part >
</ score - partwise >

< duration > 2 < / duration >

< type > eighth < / type >

< stem > up < / stem >

< lyric >

< syllabic > begin < / syllabic >

< text > heil < / text >

< pitch >

< step > B < / step >

< alter > - l < / alter >

< octave > 4 < / octave >

< / pitch >

< duration > l < / duration >

< type > 16th < / type >

< stem > up < / stem >

< beam number = " l " > begin < / beam >

< beam number = 112 " > begin < / beam >

< notations >

< slur type = " start "

< / notations >

< lyric >

< syllabic > end < / syllabic >

< text > ger < / text >

< extend / >

< pitch >

< step > G < / step >

< octave > 4 < / octave >

< / pitch >

< duration > l < / duration >

< type > 16th < / type >

< stem > up < / stem >

< beam number = " l " > end < / beam >

< beam number = " 2 " > end < / beam >

< notations >

< slur type = II stop "

< / notations >

< lyric >

< extend / >

< / lyric >

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

detailed interpretive performance information . Separate XML languages
could be developed to represent individual printings and performances.

118 COMPUTING IN MUSICOLOGY 12

Each MusicXML score flie represents a single movement . Multi -

movement works and collections are represented in a MusicXML opus

flie , based on a separate DTD for linking and musicological data .

MusicXML documents are larger than previous text formats such as

MuseData and Humdrum . However , XML documents compress well , and

zip compression typically reduces the size of MusicXML ftIes by a factor

of 30 . MusicXML files that are seven times larger than MuseData files

when uncompressed are only twice as large when compressed .

8 . 2 MusicX ~ { L Score DTD Examples

The MusicXML score DTD is still being refined as it is tested with more

music , music formats , and musical applications . The complete DTD can

be accessed via www . musicxmLotg / xmL him / . Some examples from the

current version illustrate both the level of detail in MusicXML and some

of the standardization issues that arise when defining an XML interchange

language .

In Figure 2 we see how a note element is defined in the current

MusicXML score DTD . XML internal entities , such as full - note and

voice - track in the following example , are equivalent to macros in other

languages . The note definition is based on the layout of note records

within MuseData .

Figure 2 . Definition of a note element in a MusicXML Dm .

< ! - - Internal entities to simplify note definitions - - >

< ! ENTITY % full - note " (chord ? , (pitch I unpitched I rest)) I ' >

< ! ENTITY % voice - track " (footnote ? , level ? , track ?) " >

< ! - - Definition of the note elem . ent - - >

< ! ELEMENT note ((((cue I grace) , % full - notei) I

(% full - notei , duration , tie ? , tie ?)) ,

instrument ? , % voice - tracki , type ? , dot * ,

accidental ? , time - modification ? , stem ?

notehead ? , staff ? , bearn * , notations * , lyric *

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

Two elements within the note definition are pi tch and tie . Each

element of a pitch definition is defined to contain parsed character data

(PCDATA) . The tie , however , is an empty element with a required type

attribute that indicates whether this is the beginning or end of the tie

(Figure 3) .

Figure 3 . Elements within the note definition .

< ! ELEMENT pitch (step , alter ? , octave

< ! ELEMENT step (# PCDATA

< ! ELEMENT alter (# PCDATA

< ! ELEMENT octave (# PCDATA

< ! - - 11ie is an eIT ' ipty ' eleIT ' Lent with one attribute . - - >

< ! ENTITY % start - stop " (start I stop) " >

< ! ELEMENT tie EMPTY >

< ! ATTLIST tie type % start - stop ; # REQUIRED >

These definitions illustrate an interesting dichotomy in XML DTDs :

element text is weakly typed , but attribute text can be strongly typed .

Yet for most purposes , it is overall better design practice to put semantic

data into elements rather than attributes (Harold 1999) . Elements are

generally easier to manipulate than attributes from within an XML

program , and elements can have more complex structure than attributes

can .

The weak typing of element text helps make XML DTDs more extensible

for new applications , but puts a heavier burden on documentation and

software to handle interoperability . In our current MusicXML software ,

pitch names and note types are interpreted using American terminology

(C , not do or Ut , an eighth note , not a quaver or crochet) . But this is due to

the software . Comments in the MusicXML DTD note this current

restriction , but nothing in the MusicXML DTD can enforce it

automatically . This particular restriction may be removed in future

iterations of MusicXML , but in general , dialect issues can arise within a

DTD based on the actual content of the XML elements . One of the

benefits ofXML schemas is to make stronger typing available throughout

an XML language definition , not just at the attribute level . This does not ,

however , eliminate the design tradeoff between extensibility benefits and

dialect drawbacks .

GOOD : MUSICXML FOR NOTATION AND ANALYSIS 119

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

8.3 MusicXML Analysis Examples

120 COMPUTING IN MUSICOLOGY 12

One limitation to computer-based musical analysis has been the tight
coupling of representations to development tools. Humdrum tools require
familiarity with Unix usage, while MuseData tools run in TenX, a non-
standard DOS environment. In contrast, XML programming tools are
available for all major-industry programming languages and platforms.
This lets the user rather than the representation language choose the
programming environment, making for simpler development of musical
applications.

Two main programming models are currently available for handling XML

data : the Document Object Model (DOM) and Simple API for XML

(SAX) (Martin et ale 2000) . The W3C ' s DaM interprets an entire XML

document as a tree of nodes . SAX (for serial access) provides an

alternative event - based model , where an entire XML document need not

be read into memory at once , but can instead be parsed on an as - needed

basis . Tools for both models are available for many programming

languages (e . g . java , C + + , Visual Basic) from many vendors . These

examples use a DO M - based model coded using Microsoft Visual Basic .

Both of the analysis program examples are adapted from the problem list

on the Humdrum Web site .

Say we want to investigate whether Bach ' s pieces really have 90 % of their

notes in one of two durations (e . g . quarters and eighths , or eighths and

sixteenths) . We can do this by plotting a distribution of note durations on

a bar chart , displayed together with a simple spreadsheet . Figure 4 shows

the duration distribution for the second movement of Bach ' s Cantata No .

6 (BWV 6) . The two most prevalent note durations make up nearly 87 %

of the notes . This is not quite the 90 % posed in the question , but still a

more uneven distribution than often seen . For retrieval purposes , an

extended program could then look for the works in a given corpus with

the most uneven distribution of note durations .

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

Figure 4. Duration distribution for Bach�s Cantata No. 6 (BWV 6), second movement.

Note durations are represented as fractions in many musical codes,

including MuseD ata and NIFF. MusicXML follows MuseData�s example

in encoding the denominator (which changes rarely) in a separate element

from the numerator, which is coded individually for each note. Thus to

build the distribution chart, we need to search not only for <note>

elements, but also for the <divisions> elements that change the

duration denominator, represented as fractions of a quarter note. An

earlier piece of code searches through the document for all the

<divisions> used, and computes a value called nDivis ions that is

an even multiple of all these different divisions.

Once this is done, we search the file for both <note> and <divisions>

elements using XPath, a W3C recommendation for addressing parts of an

XML document (Clark 1999). We then update the counters in an array

that contains all possible duration values within the file. Cue and grace

notes are excluded (Figure 5). Following this code, we assign the data to

our charting tools of choice (in this case, Microsoft�s Office Web

Components).

GOOD: MLTSICXML FOR NOTATION AND ANALYSIS 121

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

Set oNate

If oNate

If oNote . tagName

I / / divisions " } , XPath

nMultiplier

Else

Set oTmp = oNote . selectSingleNode (" duration ")

If Not oTmp Is Nothing Then ' Exclude grace and cue notes

.

Loop

As another example, say we wanted to investigate whether there is a
correlation between pitch and duration in a given score. The code logic
is nearly the same. Instead of computing the counts in an array, we
instead add pitch / duration pairs for each note to the spreadsheet. Rests
are excluded, along with cue and grace notes (Figure 6) .

Figure 6. Xpath or a coordinate search of pitch and duration .

Code structure is saffie as for distribution analysis .

The Else clause for handling notes changes :

122 COMPUTING IN MUSICOLOGY 12

Is
oNodes . NextNode

Nothing Then Exit Do

= " divisions " Then

nDivisions \ CLng (oNote . Text)

nDuration
CLng (oTmp . Text) * nMultiplier

nCounts (nDuration) = nCounts (nDuration) +

End If

End If

Else

Set oDuration = oNote . SelectSingleNode (" duration ")

Set oPitch = oNote . SelectSingleNode (" pitch ")

If (Not oDuration Is Nothing) And -

No rests either

* nMultiplier

Separate function

Figure 5. Xpath addressing of notes and divisions.

Set oNodes = oRoot . selectNodes (" / / note
Do

,

,

(Not oPitch Is Nothing) Then
nDuration = CLng (oDuration . Text)
nPitch = MidiNote (oPitch) ,
oWorksheet . Cells (i , l) = nDuration
oWorksheet . Cells (i , 2 } = nPitch

End If
End If

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

Figure 7. Pitch/duration scatter-plot for Mozart�s Quartet No. 7 (K. 169), first movement.

Afterwards, we map the scatter-plot axes to the two columns in the

spreadsheet to display the graph. Figure 7 shows a scatter-plot of pitch

vs. duration for the first movement of Mozart�s String Quartet No. 7 (K.

169). As with most musical scores we have looked at so far, there is no

correlation between the two.

8.4 Conclusions

Music information retrieval faces a tower-of-Babel problem. There is no

musical format in widespread use today that overcomes MIDI�s

limitations as an interchange format between performance, notation,

analysis, and retrieval applications. A problem for past interchange efforts

has been the absence of commonly used formats for complex structured

data in general. XML provides the technical foundation for an interchange

format that is more powerful and expressive than the current MIDI

GOOD: MUSICXML FOR NOTATION AND ANALYSIS 123

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

124 COMPUTING IN MUSICOLOGY 12

MusicXML (2000)

www . musicxml . ot : g/ xml . html

format. Developing converters between existing formats and a single
MusicXML document type definition has the potential to greatly simplify
the task of music information retrieval. MusicXML attempts to provide
a common document type definition that is well designed from musical,
human , and computer perspectives.

References and URLs

Bray, Tim, Jean Paoli, and Charles M. Sperberg-McQueen (eds.) (2000).
Extensible Markup Language (:~ML) 1.0 (Second Edition). World Wide
Web Consortium (W3C) Recommendation , October 6, 2000.
www.w3. ot:g/ IR / 2000/ RE C -xm 1- 20001006

Clark, James (ed.) (1999). XSL Transformations (XSLT) Version 1.0. W3C
Recommendation , November 16 , 1999 .

www.w3.o1;g/ 1X / 1999/ REC -xslt -19991116

Harold, Elliotte Rusty (1999). XML Bible. (Foster City, CA: IDG Books
Worldwide) .

Hewlett, Walter B. (1997) . " MuseData: Multipurpose Representation" in
Beyond MID I .. The Handbook of Musical Codes, ed. Eleanor Selfridge-Field
(Cambridge, MA : The MIT Press), 402- 447.
www. ccarh. or:g/ publications / books / beyondmidi / online / musedata /

Martin, Didier et al. (2000). ProfessionalXML (Birmingham, UK : Wrox Press).

Huron, David (1997). " Humdrum and Kern: Selective Feature Encoding" in
BeyondMIDI.. The Handbook of Musical Codes, ed. Eleanor Selfridge-Field
(Cambridge, MA : The MIT Press), 375- 401.
dactyl.som.ohio-state.edu / Humdrum /

MusicIR (2000). Internatt.onal5ymposium on Music Information Retrieval(plymouth,
MA ; Oct. 23-25, 2000). U. Mass. Center for Intelligent Information
Retrieval in conjunction with the Digital Libraries Phase II and the
National Science Foundation . Abstracts at :

dir. cs. umass. edu / music2000

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/276276/9780262316187_cai.pdf by Stanford Libraries user on 21 October 2021

