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The present study compared the degree of similarity of timbre represen- 
tations as observed with brain recordings, behavioral studies, and com- 
puter simulations. To this end, the electrical brain activity of subjects 
was recorded while they were repetitively presented with five sounds 
differing in timbre. Subjects read simultaneously so that their attention 
was not focused on the sounds. The brain activity was quantified in terms 
of a change-specific mismatch negativity component. Thereafter, the sub- 
jects were asked to judge the similarity of all pairs along a five-step scale. 
A computer simulation was made by first training a Kohonen self-orga- 
nizing map with a large set of instrumental sounds. The map was then 
tested with the experimental stimuli, and the distance between the most 
active artificial neurons was measured. The results of these methods were 
highly similar, suggesting that timbre representations reflected in behav- 
ioral measures correspond to neural activity, both as measured directly 
and as simulated in self-organizing neural network models. 

research on music perception and cognition has relied 

mainly on behavioral studies. Recent neurophysiological studies have 
indicated that relevant information about musical processing can also be 
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224 Pétri Toiviainen et al. 

obtained by means of brain measurements (Besson & Faïta, 1995; Besson, 
Faïta, &c Requin, 1994; Crummer, Walton, Wayman, Hantz, & Frisina, 
1994; Tervaniemi, Ilvonen, Karma, Alho, & Näätänen, 1997; Zatorre, 
Evans, & Meyer, 1994). Although studies based on these methods may 
elucidate some cognitive aspects beyond a given musical task, using a single 
method only may account for just a part of the processes underlying it. 
Therefore, use of several methods in parallel may help to obtain a more 
complete picture of the processes under examination. Moreover, each 
method may be prone to extraneous factors characteristic of that particu- 
lar method; the effect of these factors may be reduced if several methods 
are used concurrently. Behavioral studies, for instance, provide a means of 
measuring subjective experience, but the cognitive processes underlying this 
experience may not necessarily be unraveled with these experiments. In 
addition, the results obtained may be influenced by either the instruction 
provided or by the answering strategies of the subjects. Brain studies, on 
the other hand, may not measure aspects that correspond to subjective 
experience. Further, in these studies it may be difficult to isolate the re- 
sponse evoked by the actual stimulus from those evoked by other aspects 
of the environment. Given these facts, it is obvious that any theory about a 
cognitive process can be better justified if there are converging results from 
experiments that use different measuring methods (see, e.g., Garner, Hake, 
& Eriksen, 1956; Leman, 1997). 

Besides behavioral experiments and brain measurements, perceptual and 
cognitive processes of music have been studied by using computational 
approaches (see, e.g., Balaban, Ebcioglu, & Laske, 1992; Bharucha, 1987; 
Miranda, in press; Todd & Loy, 1991). A problem with some of these 
simulations is that it is not always clear how the models relate to neural 
mechanisms and subjective experience. Accordingly, for any such model to 
be adequate, it would be essential to demonstrate that the results obtained 
from simulations with the model converge with results from both behav- 
ioral and brain studies. This kind of convergence is necessary for the model 
to correspond to the cognitive process involved both at the output level 
and at the internal levels. 

Some computational models of cognition, especially symbol-based ones, 
have received serious criticism because of their weak relationship to brain 
functions (Oaksford & Chater, 1991; Valentine, 1997; Wason & Johnson- 
Laird, 1972). This has led to a growing interest in another kind of compu- 
tational model, specifically, artificial neural networks. Although these models 
are inspired by the assumed affinity to the neural mechanism of the brain, 
their relevance is also debatable. The limitation most often mentioned is 
that the majority of artificial neural network algorithms do not provide a 
convincing model of learning. This applies in the first place to the so-called 
supervised learning networks. In order to provide an adequate model of 
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learning, an artificial neural network should adapt to external stimuli with- 
out any direct intervention of the programmer. This holds true for the self- 
organizing neural networks. In these networks, the role of the programmer 
is restricted to the planning of the model's architecture. Further, the learn- 
ing algorithm should, at least on some abstract level, conform to current 
knowledge about the adaptation mechanisms of the brain. In our view, the 
Kohonen self-organizing map (SOM) meets these preconditions (Kohonen, 
1997). It provides a simple, yet effective, learning algorithm for simulating 
the formation of topographical feature maps in the neural system. 

In the present study, the similarity of responses evoked by sound stimuli 
differing in timbre was measured by applying three different methods, 
namely, behavioral tests, recordings of brain electric potentials, and com- 

puter simulations. The aim was to examine the mutual similarity of the 
results obtained by these methods. The present strategy required that these 
results could be meaningfully compared. In the behavioral test, the percep- 
tual similarity of stimuli was quantified from subjects' numerical assess- 
ments of tone similarity. A method was needed for measuring the degree of 
similarity of the brain responses. For this, we recorded the mismatch nega- 
tivity (MMN), which is a successful method for determining the degree of 
similarity of auditory stimuli in neural and perceptual terms (Näätänen & 
Alho, 1997). The MMN reflects a discrepancy between sound parameters 
represented by a neural memory trace and a new sound; the degree of simi- 

larity between two successive sounds can be quantified as the MMN am- 

plitude and latency. The neural response to the sound stimuli was simu- 
lated by means of a model consisting of a computational auditory model 
and the SOM. After the SOM was trained with a large set of instrumental 
sounds, its response to the sound stimuli used in the other two experiments 
was measured. The distances between these responses were then compared 
with the behavioral measures and the MMN data. 

Timbre 

Perceptually, a musical sound is often described in terms of four attributes: 
volume, pitch, perceived duration, and timbre. The physical counterparts 
of the first three perceptual attributes are intensity, frequency, and physical 
duration, respectively. Timbre is considered to arise from all the remaining 
physical attributes and is, thus, a multidimensional attribute of sound. It is 
associated with the time-varying spectrum of sound. 

Timbre is defined by the American Standards Association (1960) as "that 
attribute of auditory sensation in terms of which a listener can judge that 
two sounds similarly presented and having the same loudness and pitch are 
dissimilar." This definition is, however, inadequate, because it actually de- 
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fines what timbre is not rather than what it is. A number of attempts have 
been made to extract the most salient acoustic attributes affecting the per- 
ception of timbre. By examining maps obtained by applying the technique 
of multidimensional scaling (Kruskal, 1964a, 1964b; Shepard, 1962a, 
1962b) to similarity ratings, it has been found that the spectral energy dis- 
tribution in the steady-state portion of a tone is one of the main contribu- 
tors to the perception of timbre (Grey, 1977; Iverson & Krumhansl, 1993; 
Plomp, 1976; Wedin & Goude, 1972; Wessel, 1979). In perceptual terms, 
this dimension in the timbre space corresponds to the brightness of tones. 
The second dimension found in most studies is the rise time, that is, the 
time between the onset and the instant of maximal amplitude. 

Mismatch Negativity and Timbre 

Auditory perception is based on a chainlike activation of several neural 
populations, starting from the cochlea, continuing into the primary audi- 
tory cortex (located in the temporal lobe), and extending thereafter to in- 
clude neuronal networks from frontal to parietal and even to occipital ar- 
eas (for a review, see Buser & Imbert, 1992). The perception of timbre 
results from the intact functioning of the right auditory cortex areas. This 
was the conclusion of a study (Samson & Zatorre, 1994) in which the 
effect of right versus left temporal lobe lesions on processing spectrally 
versus temporally complex information was determined. 

Neural mechanisms activated by timbre changes, independent of the fo- 
cus of the subject's attention, can be investigated by recording MMN 
(Näätänen, Gaillard, & Mäntysalo, 1978). MMN is a component in the 
auditory event-related potential (ERP), which mainly originates in the au- 
ditory cortex (for a review, see Alho, 1995; see also Giard, Perrin, Pernier, 
& Bouchet, 1990; Hari et al., 1984). The MMN is typically elicited by the 
rare deviants in a so-called oddball paradigm, in which a frequent standard 
stimulus is occasionally replaced by a deviant stimulus differing from stan- 
dard tones in, for instance, intensity or duration. The MMN reflects change 
detection in a process in which the memory traces representing the con- 
stant standard stimulus and the incoming deviant stimulus are compared 
(Näätänen, 1992). In other words, the MMN reflects a memory-based pro- 
cess rather than a reaction to the presence of a stimulus; it is never elicited 
by the first stimulus in a sequence, nor is it elicited when the deviant stimu- 
lus is presented alone without intervening standards (Näätänen, 1990, 1992). 
MMN occurs independently of attention; it is elicited even when the subject's 
attention is directed to something completely irrelevant to the task, like 
reading or playing a computer game (e.g., Alho, Woods, Algazi, &c Näätänen, 
1992). 
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Recently Tervaniemi, Winkler, and Näätänen (1997) performed an MMN 
study aimed at determining whether changes in the spectral component of 
sound timbre, as reflected by MMN elicitation, would be preattentively 
encoded. This was established by intermixing nine spectrally rich missing- 
fundamental sounds with a relatively rare sinusoidal tone, all having a pitch 
of 300 Hz. Although the exact timbre of the nine standard sounds was 
different because their frequency compositions were varied, an MMN was 
elicited by the rare sinusoidal tones. This suggests that the preattentive 
processes underlying MMN grouped the spectrally rich sounds together, 
contrasting them with the qualitatively different deviant timbre. This result 
confirms that the MMN paradigm is appropriate for studying timbre per- 
ception. 

Kohonen Self-Organizing Map and Timbre 

We receive a constant stream of information from the environment 
through our senses. This information is highly dimensional and complex. 
In order to deal with this complexity, the central nervous system tends to 
reduce the dimensionality of the incoming information. Various kinds of 
ordered feature maps can be identified at least in the somatosensory, audi- 
tory, and visual modalities. The feature maps are compressed representa- 
tions of the observed signals, containing information about the most rel- 
evant features and their interrelationships. It is commonly believed that 
these maps originate from self-organization of neural connectivity struc- 
ture. There exists a well-developed computational theory of self-organiza- 
tion (Kohonen, 1997), which is based on the assumption that lateral inhi- 
bition and changes in neural connectivity are responsible for 
self-organization in the central nervous system. This theory of self-organi- 
zation has been formalized into a simple, yet effective, numerical algorithm. 
Given a set of input vectors in a multidimensional vector space, the Kohonen 
SOM identifies the most salient features of the input set, that is, the dimen- 
sions with greatest variance, and maps those features onto a two-dimen- 
sional grid of artificial neurons,1 while retaining the topological relation- 
ships between the input vectors. A mathematical description of the SOM 
and the self-organization algorithm is provided in Appendix 1. The SOM 
has been used successfully for the classification of timbre by a number of 
researchers (Cosi, De Poli & Lauzzana, 1994; De Poli, Prandoni, & Tonella, 
1993; Feiten & Günzel, 1994; Toiviainen, 1996, 1997; Toiviainen, 
Kaipainen, & Louhivuori, 1995). 

1. Subsequently, the word "artificial" is omitted in this context whenever there is no 

danger of confusing artificial neurons with biological ones. 
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Any timbre classification model has to extract the most significant pa- 
rameters of the incoming sound signal by means of a preprocessing stage. 
In timbre and speech research, this has traditionally been based on meth- 
ods like short-time Fourier transform, cepstrum, or linear predictive cod- 
ing (Rabiner &c Shafer, 1978). All these methods rely on the analysis of a 
series of successive frames, and a quasi-periodic model of the signal, that is, 
on the assumption that the properties of the signal do not change signifi- 
cantly within an analysis frame. This assumption may cause subtle dynamic 
phenomena to be discarded. More recent multiresolution analysis ap- 
proaches, such as the wavelet transform (Kronland-Martinet & Grossmann, 
1991), seem to alleviate this shortcoming, but they are still based on a 
mathematical transformation of the signal without taking into account the 
principles of human auditory processing. 

Recently, knowledge about the neuromechanical properties of the hu- 
man auditory periphery has increased significantly. On the basis of this 
knowledge, a number of computational models of the auditory periphery 
have been developed (Cohen, 1989; Ghitza, 1986; Meddis, 1986; Van 
Immerseel & Martens, 1992). A great deal of evidence in the literature 
supports the use of these auditory modeling techniques in systems aimed at 
classifying and recognizing sounds. For instance, Van Immerseel and Mar- 
tens (1992) found that their model for phonetic classification and segmen- 
tation of speech utterances clearly performed better when the preprocess- 
ing of sound was based on the properties of the auditory periphery, compared 
with traditional preprocessing strategies. In a timbre classification experi- 
ment with the SOM (Toiviainen et al., 1995), it was found that using an 
auditory model for preprocessing the sound stimuli led to significantly bet- 
ter performance; the correlation between the responses on the SOM and 
the respective similarity ratings by human subjects was significantly higher 
than when short-time Fourier transform was used. Here we use the same 
auditory model in the preprocessing stage. 

Methods 

STIMULI AND SUBJECTS 

The stimuli were produced by additive synthesis with a Power Macintosh 7600 com- 
puter. All stimuli had a fundamental frequency of 440 Hz and consisted of 16 partials. The 
partials formed a harmonic overtone series, meaning that each consecutive partial had a 
frequency 440 Hz higher than that of the preceding partial (880 Hz, 1320 Hz, etc.). All 
stimuli had a duration of 500 ms and attack and decay times of 50 ms. 

The distribution of spectral energy, perceived as brightness, was the only parameter var- 
ied in the set of stimuli. Brightness was defined as the ratio of maximum amplitudes of 
successive partials. For instance, if brightness was set to 0.5, then the second partial of the 
stimulus had a maximal amplitude of 0.5 of that of the first partial, the third had a maxi- 
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mum of 0.5 times of that of the second, and so forth. Five stimuli, having brightness values 
of 0.1, 0.3, 0.5, 0.7, and 0.9, were used in the experiments.2 Subsequently, the stimuli will 
be referred to as very dark, dark, medium dark, medium bright, and bright, respectively. 
The very dark stimulus resembled a horn sound, whereas the bright stimulus resembled a 
bagpipe. The stimuli were equalized for perceived loudness. Figure 1 displays graphically 
the amplitudes of the partials of the stimuli. 

A commonly used quantity for expressing the brightness of a sound in physical terms is 
the spectral centroid. This is the weighted average of the spectral energy across frequency 
(see Appendix 2). The higher the spectral centroid of a tone, the brighter it is perceived. 
Table 1 presents the spectral centroids of each stimulus in hertz and in critical band rate 
(Bark scale, see Appendix 2). 

Fig. 1. Maximum amplitudes of partials of each of the five tones. 

2. Sound files containing the stimuli used in the experiments are available on the World- 
Wide Web via the URL "http://www.jyu.fi/~ptoiviai/convergence.htmr. 
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Table 1 
Spectral Centroids of the Stimuli 

Standard Devianti Deviant 2 Deviant 3 Deviant 4 

(very dark) (dark) (medium dark) (medium bright) (bright) 

</)/Hz 489 629 880 1443 2799 
</>/Bark 4.82 5.98 7.78 10.84 15.24 

Nine subjects (mean age 26, range 20-31 years, four females) were employed in the 
present MMN and similarity rating experiments. All subjects were right-handed and re- 
ported no history of neurological and/or auditory problems. After being informed about the 
test procedure, all subjects gave informed consent. Each subject participated in the MMN 
experiment before performing the similarity rating test. 

PROCEDURE 

Similarity Rating 

The subjects participated in a short similarity rating task for assessment of the individual 
stimulus discrimination abilities. They were presented (binaurally, through headphones) 
with tone pairs, each pair preceded by a warning sound. Each possible pair of the five 
stimuli, including the pairs consisting of identical stimuli, was presented three times. The 
total number of tone pairs presented was thus 75. The pairs were presented in random 
order. After each presentation of a tone pair, subjects indicated on a response form to what 
extent the two tones differed from each other, with answers falling in five categories (iden- 
tical, very similar, quite similar, quite different, and very different). A test trial of five tone 
pairs was presented to acquaint the subjects with the procedure before the experiment. The 
duration of the similarity rating experiment was approximately 10 min. 

MMN Experiment 

In the MMN experiment, the standard stimulus (p = .80) was the very dark tone, and the 
four remaining tones served as deviants. Subjects were presented with six blocks of 600 
stimuli each, in which each deviant had a probability of .05 (total deviance probability was 
therefore .20). The stimuli were presented via headphones at a loudness of 70 dB SPL and 
were separated by a silent interstimulus interval of 400 ms. The sounds were transferred to 
PC-based NeuroStim software, which was used while the sounds were presented to the 
subjects during the experiment. 

Subjects were comfortably seated in a recliner in an electrically shielded and sound- 
attenuated room. Through headphones, subjects were binaurally presented with each of the 
six blocks of stimuli. The order of the blocks was randomized among subjects. All subjects 
were instructed to concentrate on reading a book of their own choice and to pay no atten- 
tion to the stimuli. If needed, they were allowed breaks between the blocks in order to 
maintain a high level of attention to reading. The duration of the MMN experiment was 
approximately 75 minutes, including the breaks between the blocks. 

The electrical signal was measured from the scalp with silver-silver chloride electrodes 
at 10 sites: Fpz, Fz, Cz, Pz, LI, L2, RI, R2, and left and right mastoids Lm and Rm. The 
lateral electrodes were placed on the axes drawn from Fz to each of the mastoids, at one 
third (LI, Rl) and two thirds (L2, R2) of the distance between Fz and the mastoids (see 
Figure 3 for the schematically drawn positions of the electrodes). Eye movements were 
monitored with Fpz and HEOG electrodes (horizontal electro-oculogram, attached to the 
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right outer canthus). The reference electrode was attached to the nose. The recording band 
pass was -0.1 to 100 Hz, and the sampling rate was 500 Hz. The data were amplified with 
SynAmps EEG amplifiers and stored on a computer disk for off-line averaging. 

SOM Simulation 

A timbre map was constructed by training a SOM on a set of real instrument sounds. 
The training set consisted of all sounds of the first three volumes of McGill University 
Master Samples (Opolko & Wapnick, 1989), making a total of 45 sounds. All these sounds 
had a fundamental frequency of 440 Hz. To obtain a vector representation of the tones, the 
stimuli were preprocessed using the peripheral part of an auditory model by Van Immersed 
and Martens (1992), modified by Leman (1995) for musical purposes. The output of the 
auditory model is a 20-component vector, updated every 0.4 ms; each component repre- 
sents the probability of neural firing in the respective auditory channel since the last update 
of the output vector. This output was low-pass filtered to smooth amplitude modulations 
and sampled 50 times during the first 500 ms of each tone. Each tone was thus represented 
by a vector of 1000 components (for details, see Toiviainen, 1996). The set of 45 vectors 
thus obtained was then used to train an SOM of 10 x 10 neurons. The training consisted of 
100,000 cycles, during which the neighborhood radius was linearly decreased from 5 to 0 
and the learning rate from 0.5 to 0. 

After the SOM was trained, its response to the five stimuli was measured one at a time. 
For each stimulus, the focus of response was determined (for the definition of the response 
focus in the SOM, see Appendix 1). The distance between the responses evoked by any two 
stimuli was defined to be the distance between the respective foci of response (see Figure 2). 

DATA ANALYSIS 

Similarity Ratings 

The similarity ratings for each subject were stored as a 5 x 5 matrix of data, where each 
matrix component was obtained by averaging the ratings for the three presentations of the 
respective tone pair. Because the order in which tones of a pair are presented in timbre 
similarity rating experiments has been found to have only little effect (Grey, 1977; Iverson 
& Krumhansl, 1993), the original response matrices were transformed into triangular ma- 

Fig. 2. Definition of the distance of two responses on the self-organizing map (SOM). Each 
black square represents a neuron; a large square denotes high activation of the respective 
neuron (i.e., small difference between the input vector and the synaptic vector of the neu- 
ron). White squares represent foci of response, (a) response to (a fictitious) stimulus a; (b) 
response to stimulus b; (c) d = distance between the responses to the two stimuli. 
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trices by averaging the ratings of pairs of stimuli presented in different orders. The ratings 
of all pairs consisting of identical stimuli, that is, the diagonal elements of the matrices, 
were ignored. Therefore, each matrix consisted finally of 10 elements. 

Consistency of ratings between the subjects was examined by calculating intersubject 
correlations. A one-way repeated measures analysis of variance (ANO VA) and a subse- 
quent post-hoc Newman-Keuls test were used to verify the statistical significance of the 
similarity ratings. The half-matrices were averaged across subjects to obtain mean similar- 
ity ratings of each of the tone pairs. In this analysis, only the ratings for the pairs consisting 
of the standard (very dark) and each of the four deviants were considered. 

MMN Experiment 

The data were averaged individually for every subject separately for each type of deviant 
as well as for the standard. Epochs with a voltage change exceeding 100 uV were automati- 
cally rejected. The analysis period was 1000 ms including a 100-ms prestimulus baseline. 
Only those standards that were not directly preceded or followed by a deviant were ana- 
lyzed. Then, the data were re-referenced by subtracting the average value between the two 
mastoids and band-pass filtered at 1-30 Hz. 

Next, the standard-tone grand-average ERP was subtracted from that of each of the 
deviants individually for each subject; the resulting waves are called subtraction waves. 
Following the common procedure, the MMN peak latency and amplitude were determined 
from the subtraction waves, and the MMN was defined as the most negative deflection in 
the subtraction wave between 100 and 300 ms after stimulus onset at the Fz electrode. The 
amplitudes were calculated as the mean during the 20-ms time window centered on the 
most negative peak, measured separately for each subject and for each deviant. 

A one-tailed t test was used to determine whether MMN amplitudes differed signifi- 
cantly from zero. A one-way repeated measures ANO VA and a subsequent post-hoc Newman- 
Keuls test were used to verify the statistical significance of the amplitude and latency differ- 
ences between the four deviant-timbre tones. 

SOM Simulation 

The distance between the response on the SOM evoked by the standard (very dark) 
stimulus and that evoked by each of the four deviants was determined. 

Results 

SIMILARITY RATINGS 

The average of the intersubject correlations was 0.90 (df= 8), each being 
significant at the p < .05 level. The similarity ratings were thus consistent 
between subjects. 

When the similarity ratings were compared with the respective brain 
recording and computer simulation data, only the ratings for the pairs 
consisting of the standard (very dark) stimulus and one of the deviants 
were compared with the respective data obtained from the brain re- 
cordings and the computer simulation. The mean similarity ratings for 
these pairs are shown in the first row of Table 2. Each mean rating is 
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Table 2 
Mean Mismatch Negativity (MMN) Latencies and Amplitudes, Mean 
Similarity Ratings, and Distances of the Self-Organizing Map (SOM) 

Response 
Deviant 1 Deviant 2 Deviant 3 Deviant 4 

(dark) (medium dark) (medium bright) (bright) 

Mean similarity rating 1.96 (0.43) 3.02 (0.68) 4.20 (0.56) 4.76 (0.43) 
SOM response distance 1.41 3.16 5.00 6.71 
Mean MMN amplitude (|iV) -2.04(0.9) -3.20(1.3) -4.76(1.0) -6.39(1.6) 
Mean MMN latency (ms) 172(31) 115(10) 112(9) 116(10) 

Note - Standard deviations are given in parentheses. 

obtained by averaging across all ratings of all subjects for the respec- 
tive pair. As can be seen, the ratings are in line with the brightness 
values of the deviants. In other words, the brighter is the deviant, the 
higher is the respective rating, F(3,24) = 277.12; p < .0001. The ratings 
differed between all deviant tones (p < .001, according to a Newman- 
Keuls post-hoc test). 

MMN EXPERIMENT 

The mean MMN amplitudes and latencies elicited by the deviants 
are displayed in the last two rows of Table 2. The MMN was elicited by 
all four timbre deviants. The values were significantly different from 
zero for all four deviants [t values ranged from t(S) = 6.74 to 14.4, all p 
< .0001]. Figure 3 shows the MMN amplitudes and latencies as a func- 
tion of stimulus deviation. The more the deviant differed from the stan- 
dard, the larger was the MMN amplitude, F(3,24) = 23.83; p < .00001. 
The MMN amplitude differed between all deviant-timbre tones (p val- 
ues between .04 and .0001, according to a Newman-Keuls post-hoc 
test). Also the MMN latency differed between deviant-timbre tones, 
F(3,24) = 28.45; p < .00001. However, only the latency of the dark 
deviant was significantly longer than that of the other deviants (p < 
.0001, by a Newman-Keuls post-hoc test). 

SOM SIMULATION 

Figure 4 displays the foci of response on the SOM for the five stimuli. 
The distances between the SOM responses to the standard stimulus and 
each of the deviants are presented in the second row of Table 2. Again, 
these distances correspond to the brightness values of the deviants. 
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Fig. 3. Upper panel: Grand-average event-related potentials (ERPs) of nine subjects to stan- 
dard timbre (the dashed line) and to four deviant-timbre tones (the line thickness denotes 
the magnitude of deviance) recorded over the frontocentral scalp areas. Bottom panel: dif- 
ference curves in which ERPs to standard timbre have been subtracted from ERPs to devi- 
ant-timbre tones (the line thickness denotes the magnitude of deviance). The schematic 
illustration in the upper right corner denotes the electrode montage used. 

Fig. 4. The foci of response on the self-organizing map (SOM) for the stimuli used (vd = 

very dark, d = dark, md = medium dark, mb = medium bright, b = bright). 
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CORRELATIONS 

Figure 5 displays the X-Y scatter plots of the physical attributes of the 
stimuli and the data obtained from MMN experiment, similarity ratings, 
and SOM simulation. 

Table 3 presents the matrix of correlations between the physical attributes 
of the stimuli (difference of spectral centroids on the Bark scale) and the 
data obtained from the MMN measurements, similarity ratings, and SOM 
simulation. 

As shown in Table 3, the correlations between the different measures are 
all significant with the exception of the MMN latency, which failed to cor- 

Fig. 5. X-Y scatter plots of the physical attributes of the stimuli and the data obtained from 
mismatch negativity (MMN) measurements, similarity ratings, and the self-organizing map 
(SOM) simulation. The plots are in the same order as the respective correlations of Table 3. 
SCD = difference of spectral centroids (on the Bark scale); SR = mean similarity ratings; 
MMNamp = mean MMN amplitude; MMNlat = mean MMN latency; SOM = distance of 
responses on the self-organizing map. 
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Table 3 
Correlations (df=2) Between the Physical Attributes of the Stimuli and 

the Data Obtained from Similarity Ratings, Mismatch Negativity 
(MMN) Measurements, and Self-Organizing Map (SOM) Simulations 

Difference of SOM 

Spectral Centroids Similarity Response MMN 

(Barks) Rating Distance Amplitude 

Similarity rating 0.95 1 * 

SOM response distance 0.982* * 0.992* * * 

MMN amplitude -0.975 * -0.991 * * * -0.999* * * 

MMN latency -0.628 (ns) -0.808 (ns) -0.758 (ns) 0.783 (ns) 

Note-*/? < .05, **p < .01, ***p < .005, ns = not significant. 

relate significantly with any other measure. Similarity ratings, MMN am- 
plitudes, and SOM response distances converge strongly, all the three re- 
spective correlations being significant at the p < .005 level. 

Discussion 

The present findings demonstrate that the obtained behavioral, neural, 
and computational measures of timbre similarity converge strongly. The 
more dissimilar the subjects rated a given pair of tones, the more dissimilar 
were the respective neural responses, both as measured directly and as simu- 
lated with the SOM. In the data set obtained, the mutual dependence be- 
tween the similarity ratings, the MMN amplitudes, and the response dis- 
tances on the SOM was almost linear; only the MMN latency failed to 
correlate significantly with the other measures. 

Some studies on music perception and cognition have demonstrated the 
similarity between behavioral and brain measurement data (Crummer et 
al., 1994; Janata, 1995; Lang et al., 1990; Tervaniemi, Ilvonen, et al., 1997). 
Further, a few studies have established the similarity between behavioral 
and computational measures (e.g., Leman, 1995, 1997; Léman & Carreras, 
1997; Parncutt, 1994; Toiviainen, 1996, 1997; Toiviainen et al., 1995). 
The present study is, however, the first one in the domain of music that has 
demonstrated the mutual convergence of all three of these measures within 
a single experimental design. 

The high correlation between the results of the behavioral test and the 
brain measurements implies that automatic (unconscious) processes of the 
brain measured with MMN have a close connection to the behavioral (con- 
scious) level. Previous support for this hypothesis has been obtained from 
studies on discrimination tasks (Lang et al., 1990; Tervaniemi, Ilvonen, et 
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al., 1997; Tiitinen, May, Reinikainen, & Näätänen, 1994). The task of 
similarity rating is, however, more demanding than that of discrimination, 
because the subjects have to assess the stimuli along a scale instead of just 
judging whether a stimulus differs from another. Therefore, in comparison 
with the discrimination task studies, the present findings can be seen as 
providing even stronger evidence for the aforementioned hypothesis. 

The high correlation between the results of the behavioral test and the 
computer simulation provides support for the view that artificial neural 
networks are appropriate for studying some aspects of human behavior. By 
means of properly designed artificial neural network models, one could, 
for instance, simulate a given behavioral task. The results thus obtained 
could provide new working hypotheses that could then be tested by actual 
behavioral experiments. 

The high correlation between the results of the brain measurements and 
the computer simulation suggests that the SOM, after being trained, re- 

sponds to sound stimuli in a way similar to how the brain responds. More- 
over, this finding supports the view that the SOM provides a convincing 
model of how the response structure of the brain arises through self-orga- 
nization and exposure to environmental stimuli. Therefore, SOM-based 
computer models can be useful in the design of brain measurements; simu- 
lations carried out with such models may help to formulate new hypoth- 
eses for these studies. 

The stimuli used in the present experiment were fairly simple compared 
with those found in a natural sound environment. One should, however, 
bear in mind that ERP (thus also MMN) research has traditionally used 
pure sinusoidal tones to ensure sufficient control over stimulus material 
and that only recently have temporally and/or spectrally complex sounds 
been used. So the present stimulation should be seen as a successful com- 

promise between the tradition of MMN research and the natural sound 
environment. In the future, the present experiment could be repeated with 
more complicated, possibly natural, sound stimuli. 

In summary, the study reported here provides the first demonstration of 
the convergence of behavioral, neural, and computational measures of a 
musical task. The present findings strongly support the view that relevant 
information about perceptual and cognitive processes of music can be ob- 
tained by concurrently using these three research paradigms.3 

3. We are grateful to Carol Krumhansl for valuable comments and suggestions. This 
work was supported by the Academy of Finland. 
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Appendix 1 
Description of the SOM 

The SOM has n input neurons, each having a specified activation level ar The input to 
the network is, thus, an «-dimensional vector a = (av av ..., an). The SOM also has m 
output neurons receiving activation from the input neurons. The output neurons usually 
form a two-dimensional planar array. Each input neuron is connected to each output neu- 
ron. A weight w .. is associated to the connection from input neuron i to output neuron /. 
The connections to output neuron / can thus be represented by an «-dimensional vector w. 
= K;,w2;, ...,">„,). 

There are several variants of the self-organization algorithm; the one used in this study is 
as follows: 

1. The weights are initially given random values, the radius of the topological 
neighborhood p and the learning rate T| are chosen. 

2. An input vector a is chosen randomly from the set of all possible input vectors 
and is presented to the network. 

3. The Euclidean distance d. of the input vector a from every weight vector w. , ; = 
1, ..., w, is calculated according to the formula 

4 = Vx <*-«//. (i) 
4. The output neuron with the least distance d. is chosen as the winner. 
5. For all output neurons lying inside the topological neighborhood of the winner, 

the weight vectors are moved toward the input vector according to the formula 

w;. <- wy + T|(a - w;). 
W 

After the modifications, the topological neighborhood becomes more sensitive 
to input vector a and similar input vectors. 

6. The radius of the topological neighborhood p and the learning rate T| are gradu- 
ally decreased in order to achieve a more precise mapping after the gross topol- 
ogy has found its shape. 

7. The training cycle, that is, steps 2-6, is repeated for a predefined number of 
times. This is typically of the order 10,000 ... 100,000. 

After the SOM has completed the training, test vectors can be presented to it. The re- 
sponse evoked by the vector can be visualized as an activation pattern (see Figure 2). This 
can be carried out by defining an activation function, whose value depends on the error a - 

w;, so that a small error leads to a high activation value, and vice versa. The response focus 
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evoked by the vector a is defined as the neuron whose weight vector is closest to vector a. In 
other words, neuron r is the response focus, if 

dr = min dp (3) 

where d. is defined as in Equation 1. 

Appendix 2 
Spectral Centroid and Critical Band Rate 

The spectral centroid (/) of each stimulus in hertz can be calculated by using the formula 

laf. 
<f>-^r (4) 

where ai is the maximal amplitude and fi the frequency of partial /, and the summation is 
carried out across all partials. 

The centroid can also be expressed in critical band rate (Bark scale). When exposed to a 
stimulus, the auditory system performs a spectrographic analysis. The cochlea can be re- 
garded as a bank of band-pass filters whose center frequencies are ordered tonotopically. 
Critical band rate is a measure of tonotopic position in the auditory system and is thus 
useful in producing tonotopic spectra of sounds. The critical band rate (on the Bark scale), 
can be calculated according to 

-mëô/r"0-53 (5) 

where frequency fis expressed in hertz (Traunmüller, 1990). 
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