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Music Perception © 1999 by the regents of the 
Summer 1999, Vol. 16, No. 4, 439-456 university of California 

The Combinatorial Model of Pitch Contour 

IAN QUINN 
Eastman School of Music of the University of Rochester 

Much previous work on the perception of pitch contour has concerned 
itself only with the contour relations among adjacent notes, which may 
lead to the assumption that relations among nonadjacent tones do not 
play a role in the mental representation of contour. Music theorists, on 
the other hand, have developed sophisticated models of contour in which 
relations among nonadjacent tones play an integral part. In order to test 
the salience of relations among nonadjacent melodic tones in the percep- 
tion of melodic contour, musically trained participants were asked to 
rate the similarity of discrete pairs of stimulus melodies with regard to 
contour. The results suggest that although contour relations among adja- 
cent tones are more significant than those among nonadjacent tones in 
determining judgments about contour similarity, nonadjacent contour 
relations do contribute to such judgments. 

music theorists find it convenient to conceive of pieces or pas- 
sages of music as sets of points in a multidimensional metric space, 

the dimensions of which include (but are not limited to) time, pitch, ampli- 
tude, spatial placement, and various dimensions of timbre.1 A similar con- 
ceit underlies our music-notation system, in which points (noteheads) are 
given meaning roughly by their location relative to the two orthogonal 
axes of pitch and time. So construed, music as notated in pitch-time space 
can be viewed as a two-dimensional projection of a more complex, higher- 
dimensional structure. Such a projection constitutes an abstraction that 
admits of an infinite number of (re-)realizations in higher-dimensional mu- 
sical space. 

It is useful to distinguish between two kinds of abstraction in connection 
with the multidimensional picture of music. The first kind of abstraction, 

1. Morris (1987) gives a thorough treatment of the spatial conception of music. Particu- 
larly interesting are his views on the interaction of linear, cyclic, ordered but nonmetric, and 
partially ordered dimensions in higher-order spaces. 

Address correspondence to Ian Quinn, Department of Music Theory, Eastman School of 
Music, University of Rochester, 26 Gibbs Street, Rochester, New York 14604. (e-mail: 
iq@theory.esm.rochester.edu) 
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440 Ian Quinn 

just characterized as a kind of projection, involves the simple deletion of 
one or more dimensions. The second kind of abstraction, which is less 
destructive, involves the removal of metric information from a dimension, 
while maintaining order relations. For example, the abstraction from tunes 
to pitch patterns (defined respectively as "pitches in measured time" and 
"pitches in unmeasured time") involves stripping away information about 
the durations and metrical relations among the pitches of the tune, but 
preserves the temporal order of those pitches. 

This second kind of abstraction is central to the notion of contour.2 When 
we speak of the pitch contour of a melody or pitch pattern, we are con- 
cerned only with whether one note is higher or lower than another, and not 
how much higher or lower it is. Information about the size of intervals is 
discarded, while information about the direction of intervals is preserved. 
This leaves us with three contour relations - referred to in the sequel as up, 
down, and no-change. 

Most empirical studies of contour have focused on the contour relations 
among adjacent notes of pitch patterns. Drawing on recent music-theoreti- 
cal research, this study assesses the perceptual significance of the contour 
relations among nonadjacent notes as well as adjacent notes; this approach 
to representing contours is known as the combinatorial model of contour 
(Polansky & Bassein, 1992). 

Perception of Pitch Contour 

Contour information is thought to be a factor in the long-term memory 
of melodies. Contour has been shown to be as important as chroma (pitch 
class) and tone height (pitch) in the recall of familiar tunes. Idson and 
Massaro (1978) showed that when familiar melodies were altered by shift- 
ing their tones to different octaves while preserving chroma, listeners were 
best able to identify them when the contour of the altered version was the 
same as that of the original; recognition of melodies so altered, in fact, was 
almost as good as recognition of the original melodies. Massaro, Kallman, 
and Kelly (1980) achieved similar results for novel melodies taught to par- 
ticipants during a 2-day training phase conducted before the recognition 
task. Chroma must be preserved along with contour in such tasks, how- 
ever, as Moore and Rosen (1979) discovered when participants failed to 
recognize familiar tunes transformed by uniform expansions and contrac- 

2. While the term contour is often used in a more general way to refer to durational, 
registral, or timbrai structures, it will be used in the more restrictive sense of "pitch con- 
tour" throughout this article. For more on the general sense, see Marvin (1989, 1995) and 
Hermann (1994). 
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Combinatorial Contour 441 

tions of the logarithmic relationship between the frequencies of melodic 
tones (see also Dowling, 1978). 

When it comes to short-term melodic memory, it seems that contour 
plays a more significant role, whereas chroma recedes in importance. When 
asked to compare unfamiliar tunes with either transposed versions of the 
tunes or same-contour lures, participants are unlikely to be able to distin- 
guish targets from lures, leading to the conclusion that listeners rely on a 
contour strategy of short-term recall in recognition tasks (Dowling & 
Fujitani, 1971). Several factors mitigate this basic principle, however. Trans- 
positions of tonal melodies are more likely to be confused with same-con- 
tour lures than are transpositions of atonal melodies (Dowling, 1978). 
Musically trained listeners are better at discriminating transpositions from 
atonal same-contour lures than are musically untrained listeners (Dowling, 
1978). The amount of time between stimulus and recall has been shown to 
be of significance in determining whether or not listeners will use contour 
information in recall (Dowling, 1982, 1991; Dowling & Bartlett, 1981; 
Dowling, Kwak, & Andrews, 1995): only with short unfilled time-spans 
will they do so, and when the time is extended and filled, listeners tend to 
rely on scale-step or interval representations of the stimuli. In a study of 
infants, Trehub, Bulle, and Thorpe (1984) found that participants cannot 
discriminate between exact transpositions of six-note melodies and same- 
contour lures, provided that the melodies and lures fall within the range of 
approximately an octave; octave-scrambled lures were detected. Specific 
features of contour also affect recognition ability: Dyson and Watkins (1984) 
asked participants to notice changes in melodies and untransposed targets 
and lures. These participants proved most likely to recognize changes 
that affected peaks of contour (up followed by down), and to a lesser 
degree, contour troughs (down followed by up). Dyson and Watkins 
concluded that large-scale contour relations are more useful than local 
contour features for the recognition of transposed melodies, and that 
local features are more useful for the recognition of untransposed melo- 
dies. 

Musically trained listeners are able to isolate the contour information in 
a pitch pattern when specifically asked to do so. Dowling (1986) found 
that trained listeners performed significantly better than untrained listen- 
ers in the recall and discrimination of contours. In several studies by 
Edworthy (1982, 1985), musically trained participants were required to 
notice when transpositions of novel pitch patterns contained errors in con- 
tour. It was found that participants fared better at this task with shorter 
melodies (5 notes) then with longer ones (15 notes); performance deterio- 
rated with increasing pitch-pattern length in a study testing seven lengths. 
(As the length of pitch patterns increased, participants were better able to 
discriminate pitch errors than contour errors.) 
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442 Ian Quinn 

The Role of Note Adjacency in Models of Contour 

With few exceptions, empirical studies specifically directed at the per- 
ception of contour tend to focus only on the contour relations among adja- 
cent notes. The problem with treating contour as the set of contour rela- 
tions among successive adjacent notes of a melody is that such a 
model - henceforth a note-to-note model - does not preserve information 
about larger-scale contour relations, which may be just as significant in 
determining cognitive representations of melodic shape as note-to-note re- 
lations. Figure 1 displays a note-to-note contour contained in Edworthy 
(1985, Figure 2). The melody Edworthy gives as an instantiation of that 
contour (her Figure 1), is shown in Figure 2a. This melody begins and ends 
on C4, first moving above that note and then approaching it from below. 
But the contour in Figure 1 can also be realized as a melody with a decided 
upward trend (Figure 2b) and one with a decided downward trend (Figure 
2c). Under a model that takes into account contour relations among non- 
adjacent tones, the three melodies of Figure 2 might be said to have con- 
tours that are similar, but not necessarily identical. 

The question of whether the concept of contour applies to nonadjacent 
as well as adjacent tones has a history in the literature of music scholar- 
ship. Early ethnomusicological studies (Adams, 1976; Kolinski, 1965; 
Seeger, 1960) focused on contour relations involving nonadjacent tones 
that are structurally important by virtue of being beginnings or endings, 
high or low notes, or emphasized in some other musical dimension, ignor- 
ing contour relations among nonstructural tones. On the other hand, one 
of the foundational articles of the music-theoretical literature dealt exten- 
sively with a note-to-note model of contour (Friedmann, 1985), ignoring 
contour relations among nonadjacent tones, regardless of structural im- 
portance. But recent theoretical work has concerned itself with models of 
contour that include both note-to-note and larger-scale features (Marvin 
& Laprade, 1987; Morris, 1987, 1993; Polansky & Bassein, 1992; Quinn, 
1997). 

The authors of the studies just cited all use what Polansky and Bassein 
(1992) call the combinatorial model of contour. In the combinatorial model, 

Fig. 1. A note-to-note contour (Edworthy, 1985, Fig. 2). 
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Fig. 2. Three melodic realizations of the contour in Figure 1: (a) a melody that ends where 
it begins (Edworthy, 1985, Fig. 1), (b) another realization, this time with an overall ascend- 
ing trend, (c) a realization with an overall descending trend. 

each note of a pitch pattern is considered in terms of its contour relation- 
ship to each of the other notes in the pitch pattern. The combinatorial 
contour of a pattern of n pitches can be represented as an n x n matrix. 
Each row and each column in the matrix corresponds to a note in the pitch 
pattern. The entry at cell // in the matrix C indicates the contour relation 
that obtains from note i to note / as follows:3 

£ _ f 1 if ; is higher than i (1) 
" 

_ 
I 0 otherwise. 

(Note that the entries along the main diagonal of a combinatorial contour 
matrix will always be zero, because every note is trivially the same as itself 
with respect to pitch.) 

Figure 3 shows how each of the melodies in Figure 2 would be repre- 
sented in the combinatorial model. The main diagonal in each matrix is set 
in bold type. Note that the general shape of each pitch pattern is reflected 
in the distribution of ones with respect to the main diagonal; in the charac- 
teristic matrix of the ascending melody (Figures 2b and 3b), the ones are 
above the main diagonal, and in that of the descending melody (Figures 2c 
and 3c), they are below it. For Edworthy 's original melody, which is more 
or less balanced around C4, the characteristic matrix has its ones distrib- 
uted fairly evenly on either side of the main diagonal. 

We know from both research and from musical intuition that if two 
melodies have the same note-to-note contour, it is possible to assert a rela- 

3. This characterization of the combinatorial model of contour consolidates the tripar- 
tite structure of contour relations by taking up as the sole primitive contour relation and 
making a binary distinction between ascent (up) and nonascent (the other contour rela- 
tions, no-change and down). The choice of up as the primitive is purely, and the model 
could be equally well constructed by using 1 to represent descent and 0 to represent 
nondescent. The implicit perceptual claim of the combinatorial model is that contour rela- 
tions among nonadjacent melodic tones are salient, and not that up is the perceptually or 
cognitively privileged contour relation. A rationale for the particular characterization of the 
combinatorial model used here may be found in Quinn (1997). 
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Fig. 3. Combinatorial contour matrices corresponding to the three melodies in Figure 2. 

0 1111110 0 
0 0 1110 10 0 
0 0 0 110 10 0 
000000000 

a. 000100100 
0 0 1110 10 0 
000000000 
11111110 1 

_0 1 1 1 1 1 1 0 0_ 

"o i i i i i i i i" 
0 0 1111111 
0 0 0 111111 
0 0 0 0 0 0 111 

b. 0 0 0 10 0 111 
0 0 0 110 111 
000000001 
0 0 0 0 0 0 10 1 

_0 0000000 0_ 

"o i i i i o o o o" 
0 0 1110 0 0 0 
000100000 
000000000 

c. 000100000 
111110 10 0 
111110 0 0 0 
11111110 1 
11111110 0 

tion of similarity between them: in an imaginary piece that uses the melody 
in Figure 2a as a main motive, one might imagine using the other two 
melodies in Figure 2 to change key and register while maintaining some 
kind of motivic coherence. At the same time, the differences between the 
three melodies are clear enough to be recognizable as differences of con- 
tour. The extent to which such differences override the equivalence asserted 
by the note-to-note model has yet to be studied empirically. 

Similarity of Contours: Theoretical Models 

Marvin and Laprade (1987) and Polansky (1987, 1996) independently 
developed a procedure for measuring the degree to which two combinato- 
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rial contours of the same length are structurally similar. The similarity mea- 
sure, referred to here as OSIM, is essentially a measure of the proportion 
of entries that are the same in both matrices, excluding the trivial corre- 
spondences of the zeroes along the main diagonals.4 The similarity mea- 
sure takes values between zero (in the case where the matrices have nothing 
in common but the main diagonal) and one (in the case where the matrices 
are identical). Increasing values denote increasing similarity. The maximum 
value, 1, denotes equivalence of combinatorial contour; note-to-note con- 
tour equivalence is a necessary condition for combinatorial contour equiva- 
lence, but not a sufficient condition. 

The CSIM similarity index of the contour matrices in Figures 3b and 3c 
can be calculated by counting the number of entries in each matrix that are 
common to both (which is 29; see Figure 4) and dividing that by the total 
number of entries in each matrix that are off the main diagonal (which is 
72 in this case, and generally equal to n1 - n for «-note contours). The 
result is approximately 0.40 - quite a low value, considering that the un- 
derlying melodies are said to have the same contour under the note-to-note 
model. In principle, two melodies or pitch patterns of n notes with identi- 
cal note-to-note contours can have a CSIM index as low as 

2(n-l) = 1_ (2) 
n1 - n n 

in the case where the two pitch patterns differ in all contour relations ex- 
cept for those among adjacent notes. 

Table 1 summarizes the C+SIM contour similarity measurement for all 
three of the melodies in Figure 2. Note that according to these results, 
melody (a) is more similar to both melodies (b) and (c) than melodies (b) 

Fig. 4. Calculating the OSIM similarity index for the melodies in Figures 2b and 2c: 29 of 
the 72 off-diagonal entries of each matrix (40%) are common to both, a low value consid- 

ering that the underlying melodies have the same note-to-note contour. 

4. CSIM (Quinn, 1997) is essentially the same as the CSIM measure (Marvin & Laprade, 
1987) and the OCD metric (Polansky, 1996), adapted to the characterization of the combi- 
natorial contour model presented here. 
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Table 1 

OSIM Contour Similarity Index for Pairs of 
Melodies in Figure 2 

Melody 

a b 

b Ô6Ô 
~ 

c 0.81 0.40 

and (c) are to each other. This is attributable to the fact that melody (a) is 
balanced over the long term: its moves up and down tend to cancel each 
other out and it ends where it began. Melody (b), on the other hand, makes 
larger moves when it goes up then when it goes down, and it ends on its 
highest note; melody (c) makes larger moves when it goes down than when 
it goes up, and it ends much lower than when it began. This demonstrates 
that the combinatorial contour model is sensitive to interval size as well as 
interval direction, but only interval size relative to the other intervals within 
a pitch pattern. 

Polansky (1996) suggests that similarity measurements based on the com- 
binatorial contour matrix might also involve weighting various portions of 
the matrix to model different situations. He offers two kinds of weighting 
schemes. The first type involves weighting the diagonals of the matrix ac- 
cording to how far they are from the main diagonal; this has the effect of 
treating note-to-note contour relations differently from other contour rela- 
tions, and in general, treats contour relations differently according to their 
degree of adjacency - how many notes intervene between the two notes 
involved in the relation. Such a weighting scheme, he suggests, might model 
the intuition that note-to-note contour relations (those with minimal de- 
gree of adjacency) are more perceptually salient. The second type of weight- 
ing treats contour relations according to where in the pitch pattern the first 
of the notes involved falls; that is, according to how far from the upper-left 
corner of the matrix the entry is located. He suggests that this kind of 
weighting might help to model the intuition that the beginning of a melody 
is more important to contour perception than is the end. 

Experiment 

Musically trained listeners, as has been stated above, are able to com- 
pare the contours of pitch patterns when specifically asked to do so. It is 
therefore hypothesized that if the combinatorial model is more perceptu- 
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Fig. 5. Experimental design. 


			 SIMILARITY INTERVAL 
			 

[0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0) [1.0,1.0] 
			 EQUIVALENCE TYPE 
			 . 
			 

NOTE-TO-NOTE COMBINATORIAL TRIALS 10 10 10 10 10 10 

no no 25 la(5) lb(5) lc(5) ld(5) lc(5) 

yes no 25 2a(5) 2b(5) 2c(5) 2d(5) 2e(5) 

yes yes 10 3f(10) 
CONDITION LABEL (NO. OF TRIALS) 

ally relevant to such a task than the note-to-note model, then such listeners 
will be more likely to judge a pair of melodies as similar in contour if they 
are identical in both the note-to-note model and the combinatorial model 
than if they are identical in the note-to-note model alone. It is further hy- 
pothesized that listeners' rating of the contour similarity of pairs of pitch 
patterns will be correlated to the OSIM contour similarity index for those 
pairs. 

METHOD 

Participants 

Thirty-four undergraduates (18 males and 16 females chosen at random) enrolled in 
first-year theory classes at the University of Rochester's Eastman School of Music partici- 
pated in the study and received course credit for their participation. Nine of the participants 
self-reported having absolute pitch (AP); these reports were not confirmed empirically. Par- 
ticipants had a mean age of 18.1 (SD = 0.61) years and had studied music formally for a 
mean of 10.0 (SD = 3.10) years. 

Design 

Eleven groups of stimuli, with properties indicated in Figure 5, were tested. Each stimu- 
lus condition is labeled with a number indicating the equivalence condition ( 1 for no equiva- 
lence, 2 for note-to-note equivalence only, 3 for combinatorial equivalence) and a letter 
indicating the level of combinatorial contour similarity as measured by OSIM (with letters 
a-f indicating increasing similarity). A complete factorial design (3 equivalence types x 6 
similarity levels) was not possible because of the impossibility of conditions like If (no 
equivalence, C+SIM = 1.00) and 3d (combinatorial equivalence, OSIM at least 0.80 but less 
than 0.90). The present design, however, allows the data to be subjected to one-way analy- 
ses of variance for both equivalence type and similarity level. Moreover, it ensures the inde- 
pendence of note-to-note equivalence and combinatorial similarity levels for the purpose of 
evaluating the relationship between a priori models of contour similarity and participants' 
similarity ratings. 

Stimuli 

Stimuli were pairs of seven-note diatonic melodies spanning less than an octave. Pitch 
patterns were generated by the following procedure, illustrated in Figure 6: 
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Fig. 6. Procedure for generating the stimuli used in this experiment: (a) construct a pair of 
combinatorial contour matrices in the appropriate equivalence and similarity relationship 
(this example is from condition 2c, so the two contours have the same note-to-note contour 
and a C+SIM index higher than 0.70 but less than 0.80), (b) select a random diatonic collec- 
tion for each contour, (c) select a random diatonic note in the C4-B4 octave, together with 
the six higher notes, (d) order those seven notes to instantiate the contour specified in step 
(a). 

1. Pairs of combinatorial contour matrices were randomly generated by a com- 
puter until a pair was found whose CSIM similarity fell in the desired range 
and which met the requisite equivalence condition. 

2. For each stimulus in each pair, one of the 12 possible diatonic collections of 
pitch classes was selected at random. 

3. For each stimulus in each pair, a random note from the collection of pitches C4 
to B4 and falling in the chosen diatonic collection was chosen to be the lowest 
note in the pitch pattern. 

4. For the other notes in each pitch pattern, the six immediately higher notes in 
the chosen diatonic collection were used. Given such a gamut of seven pitches, 
there is only one way to order them such that their contour matches the chosen 
contour under the combinatorial model. 

The second and third steps of this procedure were intended to efface any possible effects of 
tonal structure on participants' similarity judgments by randomizing key distance (Step 2) 
and modal similarity (Step 3) within each pair of pitch patterns. Sample pairs of pitch 
patterns from each of the 11 conditions are listed in Figures 7-9. 
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Fig. 7. Sample stimulus pairs from conditions la-le (not equivalent note-to-note, not equiva- 
lent combinatorially). (a) condition la, OSIM = 0.57, (b) condition \b, OSIM = 0.62, (c) 
condition lc, OSIM = 0.71, (d) condition Id, OSIM = 0.86, (e) condition le, OSIM = 
0.90. 

Fig. 8. Sample stimulus pairs from conditions 2a-2e (equivalent note-to-note, but not equiva- 
lent combinatorially). (a) condition 2a, OSIM = 0.52, (b) condition 2b, OSIM = 0.62, (c) 
condition 2c, OSIM = 0.71, (d) condition 2d, OSIM = 0.86, (e) condition 2e, OSIM = 0.90. 

Fig. 9. Sample stimulus pair from condition 3f (equivalent note-to-note and combinatori- 
ally). 
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Apparatus 

Stimuli were generated in the MIDI Studio of the Eastman Computer Music Center, 
using the "Stereo Grand" piano sample on a Kurzweil K2000 sampler controlled via MIDI 
by a Power Macintosh computer running Finale software. Samples were played at a con- 
stant MIDI velocity, amplified through a Mackie MCH-80 mixer and a TAC 860 mixing 
console, processed with a Lexicon PCM-70 digital sound processor, and recorded on high- 
quality analog audio cassette tape. Pitch patterns progressed at a tempo of 150 notes/minute, 
with a 2.92-s delay separating the two pitch patterns of each pair. Pairs of pitch patterns 
were separated by 8.24 s, and each trial was announced on the tape approximately 6 s after 
the previous trial had ended. Participants listened to the stimuli via loudspeakers on state- 
of-the-art playback equipment in Eastman classrooms at a comfortable volume. All partici- 
pants heard the same random order of stimuli. 

Procedure 

Participants were told that their ability to judge similarity of "melodic shape" was being 
tested. They were played a pair of four-note pitch patterns similar to those of condition 3e 
(combinatorially equivalent) and told "These melodies have the same shape," and a pair of 
four-note pitch patterns similar to those of condition la (equivalent under neither the note- 
to-note model nor the combinatorial model, with a CSIM similarity rating of 0.50) and told 
"These melodies have dissimilar shape." In the interest of comprehensibility, the instruc- 
tions avoided the use of the words "pitch pattern" and "contour" in favor of "melody" and 
"shape," respectively. Participants then undertook three practice trials and were asked if 
they had questions about the task (none did). 

Participants were instructed to "rate the similarity of each pair of melodies purely on the 
basis of their shape, ignoring all other features of the melodies." Sixty stimulus pairs were 
presented in a single random order to all participants. Halfway through the experiment 
(after 30 trials), participants were given a 5-min rest, during which they were instructed to 
stay in their seats and remain silent. During the rest period, they were played a recording of 
Ella Fitzgerald singing "Lover" from Volume 2 of The Rodgers and Hart Songbook (Verve 
821 579-2) in order to provide aural distraction and to forestall conversation. The remain- 
ing 30 trials followed immediately. 

Data Collection 

Participants' similarity ratings were collected on a paper instrument with 60 answer 
blanks arranged in two columns of 30. Each answer blank consisted of a stimulus number 
on the left, followed by the letters A, B, C, D, E, and F, equally spaced. At the head of each 
column, the legend "Least similar shape" appeared directly over the column of As, and the 
legend "Most similar shape" appeared directly over the column of Fs. Letters were used 
instead of numbers in order to steer participants away from using counting strategies. A 
scale with an even number of steps was used in order to avoid central-value effects. 

At the top of the paper instrument, space was provided for participants to specify their 
age, sex, number of years of musical training, primary instrument, and self-reported AP 
ability (yes or no). Following the experiment, all data were entered into a computer by 
hand. 

RESULTS 

Because participants with AP (n = 9) were observed using AP-specific 
strategies (including performance of the pitch patterns on imaginary key- 
boards and notation of the pitches on the response form), a two-way re- 
peated-measures analysis of variance (ANOVA; stimulus x AP), with par- 
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ticipants treated as within-factor for both stimulus and AP, was performed 
on individual similarity ratings. That analysis revealed an effect of stimu- 
lus, F(59, 1979) = 20.07, p < .0001, but no effect of AP, F(l, 1979) = 1.60, 
p = .21. Therefore, subsequent analyses were performed within all sub- 
jects. 

A one-way unbalanced ANOVA over the three equivalence conditions 
showed an effect of equivalence type, F(2,57) = 44.80, p < .0001. A second 
one-way ANOVA over the six similarity conditions showed an effect also 
of similarity level as measured by CSIM, F(5,54) = 16.86, p < .0001. Means 
for these two ANOVAs are graphed in Figures 10a and 10b, respectively. 
Studentized Newman-Keuls tests of the significance of differences among 
means at a = .05 confirmed the differences among all three equivalence 
conditions, but showed that not all differences among the adjacent similar- 
ity levels were significant (see Table 2). 

The predictive power of OSIM with respect to participants' similarity 
ratings was tested by taking the correlation coefficient between OSIM val- 
ues and mean participant similarity ratings for each stimulus. The result, r 
= 0.78, F(l,58) = 37.76, p < .0001, suggests that C+SIM predicts only 61% 
of the variance in mean participant similarity ratings. This result, together 
with the significant effect of equivalence type, suggests that a combination 
of these two factors might produce a better predictive model. A hierarchi- 
cal cluster analysis (arithmetic-mean linkage, pair-group method) was per- 
formed on the participants' mean ratings for each stimulus pair, using the 
absolute difference between mean ratings as the distance measure. The top 
levels of the partition structure are shown in Figure 11 along with a sum- 

mary of the content of the clusters by stimulus group. A clear hierarchy 
emerges, in which note-to-note contour relations take precedence over the 

Fig. 10. Mean participant ratings for (a) the three equivalence conditions, (b) the six OSIM 

similarity levels. 
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Table 2 
Significant Differences Among Mean Participant Similarity Ratings for 

Each OSIM Similarity Level (Studentized Newman-Keuls Test, a = 0.05) 

Similarity Level 

a b c d e f 
[0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0) [1.0,1.0] 

~a  * * • 

b * 

c * 

d 
e 
£ * * * * * 

degree of combinatorial similarity as measured by OSIM. This suggests 
that a weighting scheme similar to the one proposed by Polansky (1996) in 
connection with degrees of adjacency may be operative. 

Figure 12 shows a possible connection between degree of adjacency and 
the distances among participants' mean similarity ratings. Each graph in 
Figure 12 corresponds to a branch in the clustering tree and compares the 
two clusters that are produced at that branch with the supercluster that 
produced them. In these graphs, ax corresponds to the mean proportion of 
contour relations among adjacent notes that are invariant between the two 
members of each stimulus pair in a cluster; that is, the proportion of iden- 
tical entries among those that are one cell away from the main diagonal in 
the combinatorial contour matrix. Similarly, a2 corresponds to the mean 
proportion of contour relations among next-to-adjacent notes that are in- 
variant (those that are two cells away from the main diagonal), a3 to the 
mean proportion of invariant contour relations among notes that are sepa- 
rated by two intervening notes, and so forth. 

Fig. 11. Results of a hierarchical cluster analysis (average linkage, pair-group method) of 
the mean participant rating for each stimulus. 
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Fig. 12. Classification of stimuli at the branching points of the tree from Figure 11, ana- 
lyzed in terms of contour similarity as broken down by degree of adjacency. 

These graphs suggest that contour relations with higher degrees of adja- 
cency (those closest to the main diagonal of the combinatorial matrix) have 
their primary influence at a higher hierarchical level, and that contour rela- 
tions with higher degrees of adjacency (those further from the main diago- 
nal) have their primary influence at lower hierarchical levels. At Branch 1, 
stimuli are sorted by whether or not their note-to-note contours are identi- 
cal or nearly identical. At Branches 2 and 3, they are sorted by the a2 and a3 
relations, and at Branch 4, the contour relations with lower degrees of 

adjacency - tf3, tf4, and a5 come into play. 
This interpretation is supported by a multiple regression analysis of par- 

ticipants' mean ratings for each stimulus pair, with the variables au a2j ..., 
a6 taken as predictor variables. The results of that analysis are shown in 
Table 3, with coefficients of those variables for OSIM given for compari- 
son. Overall, the regression model - which amounts to a weighted version 
of OSIM - performs markedly better than unweighted OSIM, r = 0.91, 
F(6,53) = 44.50, p < .0001. According to the regression model, note-to- 
note contour relations {ax) play a far greater role in participants' similarity 
ratings than other relations. Surprisingly, the regression model suggests that 

a3 relations contribute more to participants' judgments than a2 relations, 
even though the reverse is true in the OSIM model. This regression model, 
which corresponds conceptually to Polansky's adjacency weighting scheme, 

This content downloaded from 171.67.229.79 on Tue, 9 Apr 2013 20:40:35 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


454 Ian Quinn 

Table 3 
Multiple Regression Analysis (Ordinary Least-Squares Method) of Mean 

Participant Similarity Ratings, Predicted by Proportion of Identical 
Contour Relations Within Each Adjacency Level 

Coefficient 

Variable C+SIMa Ratings Std. Error t 

Constant 0.00 -1.10 0.31 -3.51" 
ax 0.29 3.67 0.33 11.16"* 
a2 0.24 0.83 0.29 2.81* 
a3 0.19 0.96 0.28 3.47" 
a4 0.14 0.23 0.22 1.07 
a5 0.09 0.17 0.19 0.89 
a. 0.05 0.16 0.17 0.97 

aFor comparison. 
*p < .01. **p < .001. ***p < .0001. 

performed better than another regression model based on Polansky's dis- 
tance-from-beginning weighting scheme, r = 0.82, F(6,53) = 17.72, p < 
.0001. 

Discussion 

The results of this experiment suggest that the perception of melodic 
contour is slightly more complicated than previous research has revealed. 
The established view, that contour relations among adjacent notes play a 
role in judgments of melodic similarity, is confirmed by these results. The 
data from this experiment, however, suggest that there is also a hitherto 
untested factor in the perception of contour: the contour relations among 
nonadjacent notes. 

The foregoing experiment was designed to test a priori the predictions of 
the C+SIM contour similarity measure. Post hoc analyses, however, sug- 
gested that CSIM itself may not tell the whole story, and that'a contour 
relation's position within a combinatorial contour matrix may also be a 
factor in determining its contribution to aural judgments of similarity, es- 
pecially with regard to degrees of adjacency. A neural network trained with 
data from this experiment, furthermore, suggested that there may be fur- 
ther effects resulting from (a) whether pairs of melodies have similar con- 
tours near beginnings and endings, and (b) participants' inferral of metri- 
cal structure on pitch patterns, with concomitant emphasis on metrically 
significant contour relations (Quinn & Mavromatis, 1997). It would be 
worthwhile to conduct future experiments along these lines, with stimulus 
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sets that control more carefully for the independence of individual loca- 
tions in the combinatorial contour matrix. 

Polansky (1996) has also developed some theoretical models for mea- 
suring contour similarity among pitch patterns of different lengths, which 
is made possible by the combinatorial model. The success of the combina- 
torial model at predicting participants' responses in this experiment sug- 
gests that research on different-length pitch patterns might be fruitful as 
well. Furthermore, the more general notion of contour mentioned in the 
introduction to this article admits of combinatorial treatment and merits 
empirical study. 

It is important to note that the relevance of these results to real-music 
settings is highly questionable. The stimuli for this experiment were care- 
fully designed to provide an environment that previous studies have shown 
to be favorable for attention to contour. Music-theoretical treatments of 
contour are usually focused on the analysis of nontonal music, but 
nondiatonic pitch patterns have been shown to invite intervallic represen- 
tations rather than contour-based representations. Furthermore, previous 
studies suggest that the presence of distracting material may also cause 
listeners to use non-<ontour-based representational strategies. Further study 
on the role of combinatorial contour in melodic memory is clearly war- 
ranted, as is study of the interaction between contour and tonal or rhyth- 
mic features of pitch patterns and melodies.5 

5. The research reported herein was conducted as part of a doctoral seminar at the 
Eastman School of Music. The author thanks the members of that seminar - Panayotis 
Mavromatis, Kimberly Shaw, Scott Spiegelberg, Virginia Williamson, and especially Dr. 
Elizabeth West Marvin - for their advice and assistance. In addition, Paul von Hippel and 
one of this journal's anonymous referees deserve special thanks for their good advice on 
data analysis, and Larry Polansky provided helpful commentary. Versions of this paper 
have been read before annual meetings of the Society for Music Perception and Cognition 
(Cambridge, MA, 1997) and the Society for Music Theory (Chapel Hill, NC, 1998). The 
Cambridge version was coauthored with Panayotis Mavromatis; the author hopes to pub- 
lish the results of his ongoing collaboration with Mr. Mavromatis under separate cover. 
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