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Melodic Contour Similarity Using Folk Melodies

Mark. A. Schmuckler

University of Toronto Scarborough,  
Scarborough, Canada

melodic contour, or the pattern of rises and 
falls in pitch, is a critical component of melodic struc-
ture, and has an important impact on listeners’ percep-
tions of, and memory for, music. Despite its centrality, 
few formal models of contour structure exist. One recent 
exception involves characterizing contour by the relative 
degrees of strength of its cyclic information, quantified 
via a Fourier analysis of the pitch code of the contour. 
Three experiments explored the applicability of this 
approach, demonstrating that listeners’ similarity rat-
ings for pairs of melodies were predictable from Fourier 
analysis quantifications of rhythmically complex 
(Experiment 1) and rhythmically simple (Experiment 2) 
melodies, as well as for derived similarity measures based 
on melodic complexity judgments (Experiment 3). These 
findings indicate that Fourier analysis is an effective 
model of melodic contour, and that it can predict per-
ceived melodic similarity.
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Over the years, research in music cognition 
has elucidated a handful of factors that play a 
critical role in listeners’ apprehension of com-

plex auditory information. Within the pitch domain, two 
factors consistently provide a focal structure for music 
perception (Dowling, 1978; Schmuckler, 2004, 2009)— 
the perception of tonality, or musical key (see Justus & 
Bharucha, 2002; Krumhansl, 1990, 2000a; Schmuckler, 
2004; Schmuckler & Tomovski, 2005, for reviews), and 
the apprehension of melodic contour (see Justus & 
Bharucha, 2002; Quinn, 1999; Schmuckler, 1999, 2004; 
2009, for reviews). Tonality refers to the structuring of a 
set of pitches around a central reference pitch, such that 
these tones tend to be heard in relation to this pitch 
(Krumhansl, 1990, 2000a; Schmuckler, 2004; Schmuckler 

& Tomovski, 2005; Smith & Schmuckler, 2004). Contour 
refers to the pattern of rises and falls along an auditory 
or musical dimension (Dowling, 1971, 1978, 1994, 2001; 
Dowling & Fujitani, 1971; Dowling & Harwood, 1986; 
McDermott, Lehr, & Oxenham, 2008; Schmuckler, 1999, 
2004; Schmuckler & Gilden, 1993). Most typically, con-
tour is applied to changes in pitch information, although 
it is relevant to other auditory dimensions such as loud-
ness, timbre, and rhythm (Marvin, 1991, 1995; McDer-
mott et al., 2008; Schmuckler & Gilden, 1993).

Given their respective roles in musical processing, a 
number of researchers have proposed models for the 
apprehension and cognitive structure of both parame-
ters. By and large, the majority of attention has been 
devoted to models of tonality and the process of key-
finding (Brown, 1988; Brown & Butler, 1981; Brown, 
Butler, & Jones, 1994; Browne, 1981; Butler, 1989; 
Krumhansl, 1990, 2000b; Krumhansl & Schmuckler, 
1986; Krumhansl & Toiviainen, 2001; Leman, 1995; 
Schmuckler & Tomovski, 2000, 2005; Smith & Schmuck-
ler, 2004; Temperley, 1999, 2001, 2007; Tillman, Bharu-
cha, & Bigand, 2000; Toiviainen & Krumhansl, 2003). 

In contrast, far fewer models have been proposed for 
understanding the structure and perception of melodic 
contour (Adams, 1976; Eerola, Himberg, Toiviainen, & 
Louhivuori, 2006; Friedmann, 1985, 1987; Marvin, 1991, 
1995; Marvin & Laprade, 1987; Morris, 1993; Quinn, 
1999; Schmuckler, 1999). On a music-theoretical basis, 
probably the most common form of contour model has 
been what is called a combinatorial model (Polansky, 
1987; Quinn, 1999). In such a model, each note of the 
melody is judged relative to its pitch relations with all 
other notes in the melody. This entire set of two note 
pitch relations can then be characterized by coding 
ascending pitch relations with a value of 1, equivalent 
pitch relations with a value of 0, and descending pitch 
relations with a value of –1 (although other coding sys-
tems are possible; see Quinn, 1999, for a variant). These 
models typically result in a matrix of pitch height rela-
tions between all possible combinations of adjacent and 
nonadjacent notes fully representing the interval content 
of a melody. Such matrices can then be used to predict 
the theoretical similarity between melodies, based on the 
overlap of the content of these representations.

MP2802_04.indd   169 11/15/10   3:36:28 PM

This content downloaded from 171.67.229.79 on Tue, 9 Apr 2013 20:31:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


170 Mark. A. Schmuckler

Such models have only proven moderately successful 
in terms of characterizing actual perceived contour simi-
larity, however. For instance, Schmuckler (1999)—which 
will be described in greater detail subsequently—found 
no evidence for any of the myriad of possible measures 
produced by such combinatorial models in predicting 
listeners’ perceived contour similarity. In contrast, Quinn 
(1999) did find that for a set of short, specially composed 
melodies, quantifying the overlap in interval content 
between melody pairs predicted listeners’ subsequent 
similarity ratings of these melodic pairs. Of particular 
importance for these predictions was the interval overlap 
between contiguous, or successive notes, and to a lesser 
extent, the interval overlap between non-contiguous 
notes separated by a single note (e.g., the interval between 
the first and third notes, or the second and fourth). This 
prediction, based on contiguous note information, is of 
particularly relevance given that this information most 
closely parallels the pattern of rises and falls in pitch of 
the actual musical surface, or the melody itself.

One limitation to combinatorial models of pitch con-
tour is that they are fundamentally local models based on 
aggregated pitch relations between individual pairs of 
notes. Unfortunately, such models fail to capture the 
global pattern of rises and falls in a melody, an aspect that 
intuitively seems important for listeners’ percepts of con-
tour. Accordingly, Schmuckler (1999) suggested that this 
global sense of contour could be captured via a time series 
analysis of a melody. Specifically, Schmuckler proposed 
that a melody be coded in a simple 0 – N format (with N 
equal to the number of discrete frequencies occurring in 
the melody), and that this integer code could then be Fou-
rier analyzed to determine the relative strengths of the 
cyclic components of the melody’s contour. Fourier analy-
sis is a mathematical procedure by which a complex signal, 
typically in the temporal or spatial domain, is converted 
into the frequency domain by decomposing the waveform 
into a set of harmonically related sine waves representing 
the presence of cyclical pattern information across the 
length of the original series. These sine waves are then 
characterized by their relative amplitude (strength) and 
phase (timing) relations, with the harmonic number of 
the sine corresponding to the frequency or the number of 
repetitions of that wave that occurs throughout the course 
of the series being analyzed. Thus, the first harmonic pro-
duced by the Fourier analysis represents a sine wave with 
only a single cycle throughout its length; the second har-
monic represents two complete sine waves throughout 
the length of the series, and so on. As such, all of the har-
monics describe the entire series being analyzed, while 
differing systematically (and as function of harmonic 
number) in the number of repetitions of up-down cycles 

(characteristic of a sine wave in zero phase) present in the 
waveform. When applied to a melody, Fourier analysis 
provides a convenient description of the contour – one 
that simultaneously takes into account both rapid, high 
frequency point-to-point fluctuations, as well as slower, 
low frequency trends.

Schmuckler (1999) went on to suggest that this contour 
description could be used to predict contour relations, 
such as perceived melodic complexity or contour similar-
ity. In a test of this idea, Schmuckler gathered ratings of 
contour complexity and used these ratings to generate 
derived contour similarity scores. These derived similari-
ties were then predicted by the degree of overlap of the 
amplitude and phase spectra of the contour pairs. Across 
a pair of experiments, Schmuckler found that derived con-
tour similarities of a set of 12-tone rows and 12 note tonal 
melodies were predictable from the overlap, assessed by 
both correlation and difference score measures, of the 
melodies’ amplitude spectra. Phase spectra overlap was 
more variable in its predictive power, correlating with 
derived similarity for the simple tonal melodies but not 
for the atonal 12-tone rows. Taken together, these findings 
thus demonstrated that listeners are sensitive to the ampli-
tude (i.e., strength) and possibly the phase (i.e., timing) 
information of the cyclic components of melodies, and 
use this information in their judgments of contour simi-
larity. More generally, these findings provide evidence that 
Fourier analysis can characterize melodic contour, both 
structurally and psychologically. 

Schmuckler (1999) does not provide the only evidence 
attesting to a role for time series information in charac-
terizing melodic contour. Eerola and colleages (Eerola & 
Bregman, 2007; Eerola et al., 2006), for instance, have 
examined the role of time series measures in predicting 
listeners’ percepts of melodic complexity (Eerola et al., 
2006) and melodic similarity. Eerola et al. (2006), for 
instance, found that the Fourier transform of a melody, 
as well as its autocorrelation function (which assesses the 
degree of self-similarity within a melody) predicted 
melodic complexity ratings for sets of African and West-
ern folk melodies. In a subsequent follow-up study, 
Eerola and Bregman (2007) compared listeners’ similar-
ity judgments for pairs of 10-note melodies to a variety 
of melodic predictors, including one measure that encap-
sulated contour periodicity (as assessed via Fourier 
analysis). These authors again found that contour peri-
odicity, among other factors, predicted similarity ratings, 
although these findings are difficult to interpret given 
the observed high degree of collinearity amongst the fac-
tors themselves. Together, these studies demonstrate the 
potential for Fourier analysis in characterizing melodic 
contour, and also for assessing contour similarity.
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Recently, Prince, Schmuckler, and Thompson (2009a) 
demonstrated that observers’ percepts of crossmodal 
(auditory and visual) contours also can be predicted on 
the basis of time series information. In this work, listen-
ers rated the similarity of both short and long melodic 
contours presented as melodies and as line drawings. 
These ratings were predictable from similarity measures 
derived from the overlap of the surface structure, and 
the strength (amplitude) and timing (phase) of cyclical 
information as assessed by a Fourier analysis. Accord-
ingly, these findings affirm the applicability of this type 
of contour model to crossmodal contexts.

Despite being compelling in many respects, these stud-
ies have some important limitations. One of the most 
significant concerns is the somewhat artificial nature of 
the melodic stimuli employed in these investigations. 
Eerola and Bregman (2007), for instance, used extremely 
short melodic patterns (from 4 to 9 notes), and it is not 
clear how well these fragments truly represented coherent 
musical phrases. Similarly, Schmuckler (1999), although 
choosing stimuli meant to be representative of 20th cen-
tury and simple tonal music, nevertheless employed sim-
plistic equitemporal contours. Such a choice simplified 
the application of the Fourier analysis model, but unfor-
tunately limited the generalizability of this model. Of the 
studies that have employed more naturalistic contours, 
there also remain some concerns. Somewhat obviously, 
Prince et al.’s (2009a) primary goal was investigating cross-
modal contour similarity, and as such did not test melodic 
contour similarity per se. Eerola et al. (2006), although 
also employing realistic melodies, did not actually test 
perceived contour similarity. Instead, these authors exam-
ined melodic complexity, a related but clearly distinct 
concept. Thus, although such work does imply that the 
Fourier analysis model can capture important melodic 
information, it is still an open question as to whether this 
approach provides a reasonable description of perceived 
similarity for more musically realistic contours.

A final concern with this previous work, and one 
exclusively applicable to Schmuckler (1999), arises from 
the use of a derived similarity value as the principal 
dependent measure. In Schmuckler (1999) this choice 
was primarily pragmatic, based on pilot results that were 
discouraging regarding the viability of a more direct 
similarity measure. Unfortunately, this decision does 
leave open the question of whether the Fourier analysis 
approach is effective in predicting more direct similarity 
judgments. Given all of these concerns, the current proj-
ect examines the effectiveness of the Fourier analysis 
model in predicting listeners’ perceptions of rhythmi-
cally complex melodic pairs, using a direct rating of per-
ceived similarity.

Along with extending the assessment of the Fourier 
analysis model, a second goal of this project involves 
investigating alternative characterizations of melodic 
contour. As has been recognized by numerous authors, 
melodies and melodic contours can be described in a 
multitude of ways, thus potentially containing multiple 
components. Accordingly, any or all such components 
could reasonably play a role in perceived contour simi-
larity, with the relation between these factors ranging 
from truly competitive, with one or the other model 
“winning” in its predictions of contour similarity, to 
complementary, with multiple factors mutually contrib-
uting to a more thorough characterization of contour 
similarity. Based on previous work, it seems most likely 
that it is the complementary, and not the competitive, 
scenario that best describes contour perception. Both 
Eerola and colleagues (Eerola & Bregman, 2007; Eerola 
et al., 2006; Eerola, Järvinen, Louhivuori, & Toiviainen, 
2001) and Schmuckler and colleagues (Prince et al., 
2009a; Schmuckler, 1999) have in their work found evi-
dence for multiple factors in predicting contour similar-
ity. Accordingly, it would be surprising if, within the 
current context, there was not similar evidence for an 
array of components in contour processing.

What are some of the potential components that might 
be relevant in this project? As already discussed, one class 
of models derives from time series, and specifically Fou-
rier analysis, models of contour structure. Details on 
different forms of characterizations within this class of 
models will be provided subsequently.

Along with Fourier analysis models, previous work 
suggests a potential role for at least two other classes of 
models. The first is also based on Schmuckler’s (1999) 
findings, in which the similarity between melody pairs 
was predictable based on an oscillation model of con-
tour. In general terms, the oscillation model captures the 
degree of up and down movement contained in a con-
tour. Schmuckler found that various means of character-
izing such oscillation information were reliable predictors 
of contour similarity. Again, details on this information 
will be developed subsequently.

A final category of model involves similarity based on 
the degree of comparability in the surface characteristics 
of the various melodies. Such surface information assesses 
the relative positioning of peaks and troughs in the con-
tours themselves, and has been found to play a role in 
perceived similarity (Prince et al., 2009a; Quinn, 1999). 
One such source of evidence for this factor stems from 
Quinn’s quantifications of the music-theoretic models of 
Marvin and Laprade (1987). According to Shmulevich 
(2004) a simple correlation of melodic surface informa-
tion is actually equivalent to a core component of Quinn’s 
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music-theoretic model. In addition, in their cross-modal 
investigations, Prince et al. (2009a) found that the surface 
similarity between visual and auditory contours predicted 
observers’ perceived similarity ratings. Accordingly, there 
is ample evidence to suggest a role for surface informa-
tion in contour similarity. As with the previous factors, 
more detailed discussion of different forms of surface 
information is provided subsequently.

Experiment 1: Similarity of Rhythmically  
Diverse Folk Melodies

The focus of Experiment 1 was to test the various classes 
of models just described, employing a set of more real-
istic musical stimuli, and using a direct similarity rating 
procedure. Accordingly, this experiment employed a set 
of folk melodies varying in terms of the number of notes 
contained in each melody, the rhythmic pattern of these 
notes, and so on; all parameters that were controlled 
(and equated) in Schmuckler (1999). Moreover, in this 
experiment listeners heard all possible pairings of these 
twelve melodies, and provided direct contour similarity 
ratings. As such, this study represents a significant exten-
sion of these earlier findings, and a strong test of the 
predictive validity of all of the models.

Method

Participants

The sample of listeners consisted of sixteen undergraduate 
students (M age = 19.6 years, SD = 1.5), who received 
either course credit in introductory psychology or $7 for 
participating. One additional listener was run, but her 
data were lost due to a computer error. All listeners were 
musically trained, with a mean of 11.0 (SD = 3.8) years 
playing an instrument or singing, a mean of 3.2 (SD = 3.4) 
hours/week currently involved in music making activities, 
and a mean of 14.9 (SD = 11.2) hours/week listening to 
music. All listeners reported normal hearing.

Experimental Apparatus and Stimuli

Stimuli were generated using a Yamaha TX816 synthesizer, 
connected to an IBM-compatible 286 MHz computer by 
a Roland MPU-401 MIDI controller. The timbre employed 
in this experiment was harmonically complex, and 
approximated the sound of a piano (Schmuckler, 1989). 
All tones were input into a Mackie 1202 mixer, then ampli-
fied and presented to listeners over a Boss MA-12 micro-
monitor speaker, at a comfortable listening level.

The stimuli for this study consisted of 12 folk melo-
dies, shown in Figure 1. Each melody was four measures 
in length, not including an initial “pick-up” beat, with 

the duration of each beat set to 500 ms. All melodies 
were played in the same general pitch range, and instan-
tiated either a G major or E minor tonality; these two 
keys are strongly musically related.

Procedure

Listeners were told they were participating in an experi-
ment on contour perception. They were informed that 
on each trial they would hear a pair of melodies, and that 
they were to rate the similarity of the melodies based on 
their melodic contour. Melodic contour was described 
as the pattern of rises and falls in pitch over the course 
of the melody. These ratings were to be made on a 9 
point scale, with 1 indicating very different contours and 
9 indicating very similar contours.

On each trial listeners heard one melody, followed by 
a 500 ms pause, and then the second melody. After the 
second melody, listeners typed in their rating on the 
computer keyboard and the computer automatically 
began the next trial. At the beginning of the experiment 
listeners received a practice block of 12 trials, with these 
trials consisting of all possible combinations of four 
simple melodic patterns based on a G major scale. After 
completing these practice trials, listeners immediately 
began a block of 132 experimental trials. This block con-
sisted of all possible counterbalanced combinations of 
the 12 melodies of Figure 1 (e.g., melody 1 followed by 
melody 2; melody 1 followed by melody 3 . . . melody 3 
followed by melody 1; melody 2 followed by melody 1), 
excluding repetitions of the same melody. Subsequently, 
listeners completed a musical background questionnaire 
and were debriefed as to the purposes of the experiment. 
The entire experimental session lasted 30 – 45 minutes.

Results

As a prelude to analyzing listeners’ perceived similarity 
ratings, the various theoretical models of contour simi-
larity described earlier were quantified. These models 
were then compared to perceived similarity values, to 
assess the efficacy of these earlier models.

Theoretical Models of Contour Similarity

Fourier analysis model. The first predictor of contour sim-
ilarity was based on the Fourier analysis model. Investigating 
rhythmically complex, unequal length contours such as 
those used in this study provides interesting challenges for 
the application of the Fourier analysis model. One such 
challenge involves the format of the numeric code used to 
represent the individual pitches of the melodies. In 
Schmuckler (1999), contours were coded in 0 to N – 1 
format, with N equal to the highest distinct frequency. 
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Figure 1. T he folk melodies employed as experimental stimuli in Experiments 1 and in the rhythmic condition of Experiment 3.

Because melodies were of the same length and were equit-
emporal, there was no concern over how to incorporate 
rhythmic variation into these contour codes. Unfortunately, 
by employing melodies in which the component notes 
are no longer equitemporal, the issue of rhythmic variation 
cannot be so easily circumvented. As such, the question of 
how best to account for such variation in an assessment of 
contour similarity becomes critical. 

In considering this issue, there are two possibilities. 
On the one hand, it could be argued that the rhythmic 
information contained in a melody should be treated as 
an independent factor in assessment of contour similarity. 

Such an approach is justified based on evidence for the 
independent processing of pitch and rhythm information 
in melody perception (e.g., Monahan, 1993; Palmer & 
Krumhansl, 1987a, 1987b; Thompson, Hall, & Pressing, 
2001; Thompson & Sinclair, 1993). On the other hand, it 
is possible to include rhythmic variation directly into the 
pitch code itself. This approach is conceptually aligned 
with the idea that pitch and temporal information are 
interactive in various aspects of melodic processing 
(Boltz, 1991, 1993; Boltz & Jones, 1986; Jones, 1993; 
Jones & Boltz, 1989; Jones, Boltz, & Kidd, 1982; Jones & 
Pfordresher, 1997). 
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To make these considerations concrete, take the three-
note melodic fragment shown in Figure 2. In terms of its 
relative pitch content, this fragment contains a note of 
medium frequency, followed by a note of higher frequency, 
followed by a note of lower frequency. In terms of its 
duration content, the second note is twice as long as the 
first note, and the third note is half as long as the first 
note. If one wished to code the pitch content only for 
this fragment, its integer representation would be 1 2 0, 
with 1 representing the first note, 2 the second note, and 
0 the third note. This representation, which appears in 
Figure 2 as the unweighted pitch code, codes relative pitch 
variation only, not absolute frequency differences 
between notes. This code has the advantage that it por-
trays frequency change only, and gives a “purer” repre-
sentation of the rises and falls in pitch contour. In fact, 
this is the type of code that has been typically adopted 
in contour analyses (e.g., Friedmann, 1985, 1987; Mar-
vin, 1991, 1995; Marvin & Laprade, 1987; Morris, 1993), 
as well as in previous studies on perceived contour simi-
larity (Quinn, 1999; Schmuckler, 1999). Figure 2 also 
shows a rhythm code for this fragment, labeled rhythm 
code, which consists of an integer representation of the 
relative durations of these tones, coded in terms of the 
shortest duration unit, which is arbitrarily given a value 
of 1. Finally, Figure 2 presents a code that incorporates 
both pitch and rhythm into a single contour representa-
tion, with each pitch element weighted by its duration; 
this code is labeled as the weighted pitch code. One advan-
tage to this coding scheme is that it provides a literal 
representation of what is heard by listeners in terms of 
how pitches change in real time. As an aside, it is impor-
tant to note that the terms “weighted” and “unweighted” 
are not being used in the sense often employed in psycho-
logical and specifically connectionist contexts, in which 
certain values (in this case the pitch codes) are literally 
multiplied by the weighting factor (the rhythm code). 
Instead, in the current context, weighting is being used 
to notate a contour code that is either elaborated by 
each pitch’s durational component (the weighted code) 

or is not durationally elaborated (the unweighted code). 
For simplicity in presentation, this concept of dura-
tional elaboration will be referred to as weighted versus 
unweighted.

The question of whether an unweighted or weighted 
pitch code is most appropriate is further complicated by 
issues related to how contours of different lengths can be 
compared. For unweighted pitch codes, if two contours 
vary in the number of their constituent notes, their pitch 
codes will correspondingly vary, and most importantly, 
their respective amplitude and phase spectra also will 
vary in the number of harmonics produced. Accordingly, 
comparison of sets of spectra will be constrained by the 
number of harmonics of the shorter of the two melodies,1 
comparing the strength and timing of harmonics repre-
senting the same frequency of repetitions within the 
melody. Even more importantly, comparisons of such 
spectra now reflect similar cyclic patterns in terms of the 
melody as the unit of analysis. For instance, based on this 
analysis, one could say that melody x is characterized pre-
dominantly by three cyclic repetitions within its length, 
whereas melody y is characterized primarily by four cyclic 
repetitions over the course of its length.

In contrast, if the contours are of equal length in terms 
of the number of musical beats each encompasses (e.g., 
both melodies are, say, four measures long), a weighted 
pitch code equalizes the number of contour elements, 
even if the melodies differ in their actual number of 
notes. Correspondingly, it is thus straightforward to 
compare the resulting amplitude and phase spectra pro-
duced by a Fourier analysis. Moreover, contour charac-
terizations now reflect cyclic pitch structure in time, 
relative to note durations. Thus, comparisons of the rela-
tive efficacy of unweighted versus weighted pitch codes 
in predicting perceived similarity provide a means for 
determining the relative importance of duration infor-
mation in contour characterizations. 

Given these considerations, two different pitch codes 
were generated for each melody. In the unweighted pitch 
code each note was represented using an integer between 
0 and N – 1, with N representing the number of unique 
pitches in the melody. In the weighted pitch code, the 0 to 

 

 

 

 

 

Unweighted pitch code 1 2 0 
    
Rhythmic code 2 4 1 
    
Weighted pitch code 1    1 2   2   2   2 0 

 

Figure 2. A  sample three tone melodic contour, along with various 
forms of pitch codes (unweighted and weighted) and the rhythm code.

1An alternative solution to this problem would be to equate the 
number of elements of the two pitch codes by padding the shorter 
code with the mean value of the sequence; comparison of Fourier 
spectra would now involve sequences of equal length, and no longer 
require removing upper frequency information. In fact, this procedure 
produces similar results to that provided by removal of the upper 
frequency information, as described in the text. Accordingly, the con-
ceptually simpler method of removing the upper frequency informa-
tion was employed in this work.
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N – 1 code for each note was elaborated by its duration, 
using a one-quarter subdivision of the beat as the unit 
of analysis. Figure 3 presents three of the stimulus con-
tours from this study, along with their unweighted and 
weighted pitch codes. Figure 3 also shows the duration 
values for each note used to create the weighted pitch 
code; these numbers, which will be discussed shortly, 
made up the rhythm code of these melodies.

Amplitude and phase spectra were calculated by Fou-
rier analyzing the unweighted and weighted pitch codes; 
Figure 4 presents these spectra for the analysis of the 
unweighted pitch codes of the sample melodies of Figure 
3. The degree of contour similarity between all pairs of 

melodies (based on amplitude and phase spectra) was 
then calculated by aligning the amplitude and phase 
spectra for each pair of contours and computing the 
mean absolute difference between these spectra values.2 

2Along with difference scores it is possible to correlate the ampli-
tude and phase spectra. In fact, previous work employing both mea-
sures (Prince et al., 2009a; Schmuckler, 1999) has found that both 
indexed perceived similarity ratings, although difference score values 
appear to be more sensitive than do correlation measures. With regard 
to the current data, both measures were calculated, and by and large 
produced comparable results. Accordingly, only the difference score 
analyses will be described.

Figure 3. T he unweighted pitch code, weighted pitch code, and rhythm code, as well as the surface correlations for these codes, for three sample 
stimuli of Experiment 1.
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176 Mark. A. Schmuckler

Fourier Components
M01 M05 M07

Harmonic Amplitude Phase Amplitude Phase Amplitude Phase
1 4.59 -2.65 0.74 -2.20 9.54 1.46
2 4.63 -1.77 21.92 1.15 21.76 3.13
3 4.75 -2.11 3.63 1.10 5.95 -2.20
4 8.71 -1.69 23.86 -2.09 8.58 -1.01
5 4.04 1.61 3.41 -2.01 3.26 1.80
6 1.99 0.96 1.51 2.73 10.56 -2.54
7 2.84 2.39 2.48 -2.10 2.44 2.83
8 1.59 -0.36 2.96 0.78 4.05 1.90
9 0.16 1.64 2.66 -1.22 3.44 -1.02
10 3.17 2.49 6.58 2.04 2.16 -0.03
11 0.25 1.59 1.00 3.14 1.45 -1.50
12 3.30 1.64 4.58 -2.33
13 0.89 1.02 4.21 1.17
14 3.18 2.56 4.66 2.64
15 2.14 2.33 4.13 0.43
16 1.11 -2.61

Absolute Difference Scores
M01 – M05 M01 – M07 M05 – M07

Harmonic Amplitude Phase Amplitude Phase Amplitude Phase
1 3.85 0.46 4.95 4.12 8.80 3.66
2 17.29 2.92 17.13 4.90 0.16 1.98
3 1.12 3.20 1.20 0.09 2.32 3.30
4 15.15 0.40 0.13 0.68 15.27 1.08
5 0.63 3.61 0.78 0.19 0.15 3.81
6 0.47 1.77 8.57 3.51 9.04 5.27
7 0.36 4.49 0.40 0.45 0.04 4.93
8 1.36 1.13 2.45 2.26 1.09 1.12
9 2.50 2.86 3.28 2.66 0.78 0.20

10 3.41 0.44 1.01 2.51 4.42 2.07
11 0.75 1.56 1.20 3.09 0.45 4.65
12 1.28 3.97
13 3.32 0.14
14 1.48 0.08
15 1.98 1.90

Mean Absolute 
Difference Score 4.26 2.08 3.74 2.22 2.19 2.56

Figure 4. A mplitude and phase spectra, along with amplitude and phase spectra difference scores, for three sample stimuli of Experiment 1.

For the unweighted pitch codes, difference scores were 
based on only those harmonics contained in both con-
tours. Thus, comparison of contours M01 and M05 in 
Figure 4 was based on the difference in 11 harmonics, 
whereas comparison of contours M05 and M07 was 
based on 15 harmonics. Figure 4 also shows these differ-
ence scores for both amplitude and phase spectra for the 
three sample melodies. Because these melodies were all 
of equal total length in terms of the number of beats, 

Fourier analysis of the weighted pitch codes produced 
amplitude and phase spectra for each contour contain-
ing comparable numbers of harmonics. Accordingly, 
difference scores were calculated based on the full com-
plement of amplitude and phase spectra information. 
Ultimately, these comparisons produced a set of half-
matrices representing theoretical similarity between 
unweighted and weighted pitch codes, based on both 
amplitude and phase spectra differences.
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Melodic Contour Similarity 177

Figure 5. C ontour reversals (notated by arrows above the melodies) and pitch intervals (notated by brackets below the melodies) for three sample 
stimuli of Experiment 1.

Oscillation models. Four different oscillation measures 
were developed. The first two measures involved contour 
reversals, including a count of the total number of con-
tour reversals occurring in the melody (i.e., changes in 
interval direction, such as ascending → descending or 
descending → ascending), and the mean number of con-
tour reversals (the summed contour reversals divided by 
the number of notes in the contour). The final two mea-
sures involved the interval sizes within the contour, and 
included the summed interval size, which was the 
summed number of semitones contained within each 

individual contour segment (a single direction motion, 
either up or down contour segments), and the mean 
interval size, which was the summed interval size divided 
by the number of contour segments. Based on these 
oscillation measures, contour similarity can be calculated 
by creating difference scores between the various values. 
Figure 5 shows the reversal and interval size measures 
for the sample contours of Figure 3, and their respective 
similarities. 

Surface correlation models. The final category of models 
involved similarity based on surface characteristics of the 
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178 Mark. A. Schmuckler

melodies. To assess surface similarity, the unweighted pitch 
codes, the weighted pitch codes, and the rhythm codes for 
the 12 melodic contours were intercorrelated. As with the 
previous analyses, when contours of differing length were 
compared, the number of elements entering into the cor-
relation was based on the length of the shorter of the two 
contours. Figure 3 presents the surface correlations of the 
unweighted pitch code, the weighted pitch code, and the 
rhythm code for the three sample contours.

Prediction of Listeners’ Contour Similarity

Initial analyses explored the impact of melodic ordering 
by correlating listeners’ similarity values for the two half-
matrices representing the varying melodic ordering (e.g., 
melody M01 followed by melody M02 versus melody 
M02 followed by M01). On an individual listener basis, 
the degree of comparability between these two half-
matrices was somewhat variable, with individual listener 
correlations ranging from –.07 to .54 (M = .16, SD = .18). 
Although potentially worrisome, it should be remem-
bered that listeners received only a single exposure to 
each melodic pair in each ordering; accordingly, a fair 
degree of variability is to be expected. Of more interest 
is the correlation between the half-matrices corresponding 
to different melodic orderings produced by averaging 

listeners’ similarity ratings; such values reflect similarity 
between melodic ordering pairs that are less influenced 
by individual variability. More reassuringly, these two 
half-matrices were strongly related, r(64) = .55, p < .001, 
indicating that similarity ratings were reasonably compa-
rable regardless of melodic ordering. 

Given the reasonable correspondence between half-
matrices on an averaged listener basis, ratings of contour 
similarity were ultimately combined across these half-
matrices for each listener, and then these averaged lis-
tener half-matrices were themselves averaged to produce 
a single half matrix reflecting the average perceived rat-
ings of contour similarity between all possible pairs of 
melodies. This contour similarity half-matrix could then 
be predicted from the theoretical models just articulated, 
to determine which of these factors were related to con-
tour similarity judgments. 

Table 1 shows the simple correlations between the 
theoretical models and the listeners’ similarity ratings, 
and presents a number of intriguing results. First, repli-
cating previous findings (Eerola & Bregman, 2007; Eerola 
et al., 2006; Schmuckler, 1999), perceived contour simi-
larity was predicted by differences in the amplitude spec-
tra between melodies produced by the Fourier analysis 
model. It is interesting to note that this predictive relation 

Table 1. C orrelations Between the Theoretical Models of Perceived Contour Similarity and Listeners’ Ratings of Contour 
Similarity for Experiments 1–3

Model

Experiment 1 
Rhythmic  
Melodies

Experiment 2 
Equitemporal  

Melodies

Experiment 3 
Complexity  

Ratings

Rhythmic Group

Pitch Code Rhy Eqi Avg

Unweighted
  Amplitude
  Phase

-.04
-.06

-.04
-.13

-.20
-.02

-.14
-.02

-.19
-.02

Weighted
  Amplitude
  Phase

-.22 C

-.25*
-.25*
-.26*

-.40**
-.22C

-.43**
-.24A

-.47**
-.25*

Oscillation
  Summed Reversals -.28* -.08 -.10 -.05 -.08
  Mean Reversals -.22 C -.29* -.09 -.12 -.12
  Summed Interval Size -.02 -.04 -.04 .02 -.01
  Mean Interval Size -.08 -.06 -.36** -.55** -.51**
Surface Correlation
  Unweighted Pitch .18 .07 .21 .17 .21
  Weighted Pitch .03 -.04 .03 .10 .08
  Rhythm .51** .23 A .29* .23B .29*

*p < .05 A p = .06
**p < .01 B p = .07
C p = .08
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Melodic Contour Similarity 179

held for the weighted, but not the unweighted pitch codes. 
Similarly, the predictive power of phase spectra differ-
ences was also significant for the weighted but not the 
unweighted pitch codes. 

In terms of the other models, there was some support 
for the oscillation model in the current results. Specifically, 
similarity values based on the summed number of rever-
sals in the contour also significantly predicted perceived 
similarity, and the mean number of contour reversals was 
marginally related. In contrast, neither oscillation mea-
sures based on the interval sizes of the contour predicted 
listeners’ ratings. These results provide a partial replication 
of Schmuckler (1999), who found that reversals did pre-
dict derived similarity measures (in one of two experi-
ments), although they diverge from this earlier work in 
that Schmuckler also found that the summed interval size 
was a predictor of contour similarity. As for the surface 
correlation models, the simple correlations between the 

unweighted or weighted pitch codes both failed to predict 
listeners’ perceived similarity. In contrast, however, the 
correlation between the rhythmic codes for these contours 
was a strong predictor of contour similarity. 

Overall, there was positive evidence for a number of 
factors in predicting listeners’ perceived contour similar-
ity, including roles for differences in the amplitude and 
phase spectra of the various melodies, the number of 
reversals of contour direction contained in the melodies, 
and the similarity of the rhythmic pattern of the notes of 
the contour. Given the existence of multiple possible fac-
tors, it is of interest to determine the relative contributions 
of each of these factors to perceived contour similarity. As 
a first step towards this assessment, it is important to 
determine how related the predictors are to one another. 
Accordingly, all of the predictors described earlier were 
intercorrelated; the resulting half-matrix of correlations 
appears in Table 2. As might be anticipated, there were 

Table 2.  Similarity Predictor Intercorrelation Matrix

Pitch Code Oscillation Model Surface Correlation

Weighted Unweighted Reversals Interval Size Pitch Rhythm

Amp Phs Amp Phs Sum Mean Sum Mean Unw Wgt

Pi
tc

h 
C

od
e

W
ei

gh
te

d

A
m

p

— .17 .69** .11 .20 .18 .09 .25* -.23* -.46** -.08

Ph
s

— .15 .32** .09 .25* -.07 -.10 -.08 -.24A -.08

U
nw

ei
gh

te
d

A
m

p

— -.12 .08 -.06 .14 .16 -.21 -.49** -.01

Ph
s

— .20 .12 .03 -.13 -.10 -.23 B -.21

O
sc

ill
at

io
n 

M
od

el

Re
ve

rs
al

s

M
ea

n

— .36** .43** -.08 -.31* -.10 -.22

Su
m — .28* -.14 -.05 -.04 -.05

In
te

rv
al

 S
iz

e

M
ea

n

— .08 -.30* -.05 .07

To
ta

l

— -.08 -.20 -.25*

Su
rf

ac
e 

C
or

re
la

tio
n

Pi
tc

h U
nw — .15 -.03

W
gt — .11

Rh
yt

hm —

*p < .05 A p = .05
**p < .01 B p = .06
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180 Mark. A. Schmuckler

significant correlations between predictors that were con-
ceptually related. For instance, the unweighted and 
weighted difference scores for both amplitude and phase 
spectra were significantly correlated, as were a number of 
the oscillation measures (e.g., summed and mean rever-
sals, summed interval size and summed reversals, mean 
interval size and summed reversals).

Of more interest, however, are the relations between 
families of predictors, such as the Fourier analysis pre-
dictors and the oscillation measures, or the Fourier 
analysis predictors and the surface correlation predic-
tors. Interestingly, and somewhat reassuringly, by and 
large the different families of predictors were unrelated, 
with only a few notable exceptions. For instance, contour 
similarity determined on the basis of surface correlation 
similarity for the weighted pitch codes appears to be 
related to the Fourier analysis measures of the unweighted 
and weighted pitch codes. In the same vein, similarity 
values based on the surface correlations of the unweighted 
pitch codes were correlated with two of the oscillation 
model values— summed reversals and summed interval 
size. Although this observed non-independence between 
some factors is potentially worrisome, it must be remem-
bered that the surface correlations of the pitch codes 
were unrelated to listeners’ similarity judgments. Accord-
ingly, the interrelations between these factors plays no 
role in the assessment of the relative strengths of the 
significant predictors.

Given these analyses, it is then viable to predict per-
ceived similarity ratings from a set of the previously 
described factors. Specifically, the amplitude and phase 
spectra difference scores for the weighted pitch code, the 
summed contour reversals, and the rhythm code surface 
correlations were found to significantly predict listeners’ 
similarity ratings, R = .58, p < .001. Of the four variables 
entered into this analysis, the rhythm surface code cor-
relation added significantly, B = 1.79, b = .45, p < .01, and 
the phase spectra difference scores were marginally sig-
nificant, B = -.49, b = -.18, p = .09. Neither the amplitude 
spectra difference scores, B = –.07, b = -.12, n.s., nor the 
summed reversals, B = -.05, b = -.13, n.s., added 
significantly.

Discussion

This study demonstrated that listeners’ similarity judg-
ments for pairs of melodic contours were related to a 
set of theoretical predictors based on a number of dif-
ferent factors, including the relative strengths of differ-
ent frequency cyclic patterns present in the contours, 
the phase relations between these cyclic components, 

the degree of contour oscillations, and the degree of 
overlap between the rhythmic pattern of the contours. 
The success of at least two of these factors, namely the 
role of amplitude spectra information and contour 
oscillations, is not surprising in that both converge with 
previous findings (Eerola & Bregman, 2007; Eerola et al., 
2006; Prince et al., 2009a; Schmuckler, 1999). As such, 
not only do these data replicate these earlier studies, 
they also extend the efficacy of these models to direct 
similarity judgments of variable length, rhythmically 
complex, melodic contours.

There are, however, a number of novel findings in this 
study. First is the finding that employing rhythmically 
weighted pitch codes produced better predictive power 
than rhythmically unweighted pitch codes; this finding 
will be explored in the General Discussion. Second, there 
is the finding that the phase relations for the weighted 
pitch codes also predicted contour similarity. The fact that 
phase information predicted similarity is not unique— 
Schmuckler (1999) did, after all, observe a role for phase 
in similarity of simple tonal melodies written to contain 
explicit phase relations, and Prince et al. (2009a) also 
found an intermittent role for phase spectra similarity. 
Third, and most intriguingly, is the finding that the over-
lap of the rhythmic pattern of the contour also played a 
role in contour similarity. The most straightforward 
interpretation of this finding is that, despite being asked 
to judge similarity solely on the basis of the pitch con-
tour itself, listeners nevertheless incorporated rhythm 
into their similarity judgments. In some ways this is not 
all that surprising a result. Listeners were not explicitly 
instructed to ignore rhythm in their judgments (although 
the experimenter did focus their attention on pitch), and 
given that attending to rhythm is a natural part of listen-
ing to music, there is no reason why listeners should have 
ignored this information. As such, it seems quite reason-
able that rhythm would play some role in contour per-
ception, and be a factor in perceived similarity.

Most importantly, and taken in conjunction with the 
findings of the multiple regression analysis, is the sug-
gestion that perceived contour similarity is influenced 
by two factors—one based on the degree of overlap 
among the cyclic pitch relations contained in melodic 
contours, and a second based on the degree of overlap 
of the rhythmic pattern of the melodic contours. The 
possibility of these two factors at work in contour per-
ception has a number of implications. Of primary sig-
nificance is the suggestion that if one were to present 
melodic contours devoid of rhythmic variation, then 
perceived contour similarity would still be related to 
similarity based on amplitude spectra information but 
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Melodic Contour Similarity 181

not on rhythmic overlap. Exploring this question was the 
goal of Experiment 2.

Experiment 2: Similarity of Equitemporal  
Folk Melodies

This study tested the idea that perceived contour similar-
ity would remain largely consistent when listeners are 
asked to judge equitemporal, as opposed to rhythmically 
complex, melodic contours. To examine this question, the 
same set of melodies employed in the previous experi-
ment were modified by removing all temporal deviations 
in note lengths, and having listeners once again provide 
similarity ratings for pairs of these contours.

Method

Participants

The sample of listeners consisted of 18 undergraduate stu-
dents (M age = 19.8 yrs, SD = 1.6), who received either 
course credit in introductory psychology or were paid $7 
for participating. Listeners had an average of 7.3 years 
(SD = 3.2) of experience playing an instrument or singing, 
spent 2.0 hours/week (SD = 2.7) involved in music making 
activities, and listened to music for an average of 12.1 hours/
week (SD = 18.2). All listeners reported normal hearing.

Experimental Apparatus, Stimuli, and Procedure

Stimuli for this study consisted of modified versions of 
the melodies employed in Experiment 1 (see Figure 6), in 

M01 
 

M02 
 

M03 

M04 
 

M05 

M06 

M07 
 

M08 
 

M09 
 

M10 
 

M11 
 

M12 

 Figure 6. T he modified, equitemporal folk melodies employed as experimental stimuli in Experiments 2 and in the equitemporal condition of Experiment 3.
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182 Mark. A. Schmuckler

which all rhythmic deviations were removed, such that 
each note in the melody was heard for 400 ms.3 The 
remaining details of the experimental apparatus, stimuli, 
and procedure, were identical to those of Experiment 1.

Results

Listeners’ similarity ratings were analyzed comparably to 
Experiment 1. Initial analyses again explored the impact 
of melodic ordering by correlating listeners’ similarity 
values for the two half-matrices representing the varying 
melodic ordering. As in the previous study, on an indi-
vidual listener basis the degree of comparability between 
these two half-matrices was somewhat variable, with  
individual listener correlations ranging from -.04 to .46 
(M = .18, SD = .16). Once again, however, the two aver-
aged half-matrices were strongly related, r(64) = .50, p < 
.001, indicating that similarity ratings were reasonably 
comparable regardless of melodic ordering. 

Given this degree of correspondence on an averaged 
subject basis, individual listener ratings were combined 
across the two presentation order half-matrices, and 
then averaged to produce a single half matrix reflecting 
the averaged ratings of perceived contour similarity for 
all possible melodic pairs. These similarity ratings were 
then predicted from the same factors as in Experiment 
1, as well as correlated with the similarity ratings them-
selves from the previous study.

Table 1 presents the correlations between listeners’ 
similarity ratings and the various theoretical models of 
contour similarity, and outlines a similar pattern as 
observed in the previous study. For the Fourier analysis 
model, replicating Experiment 1, both the amplitude dif-
ference scores and the phase difference scores for the 
weighted pitch codes—but not the unweighted pitch 
codes—employed in Experiment 1 once again predicted 
perceived similarity. Similarly, contour reversals, this 
time in the form of the average number of such reversals, 
also correlated with similarity ratings. Moreover, the sur-
face correlation of the rhythm codes as quantified in the 
previous study was again related to similarity, although 

this effect was now only marginally significant. Finally, 
the similarity ratings for this study were strongly related 
to those of Experiment 1, r(64) = .71, p < .001.

As in Experiment 1, multiple regression analyses were 
conducted to assess the relative power of the various 
theoretical factors in predicting perceived similarity rat-
ings. Specifically, listeners’ perceived similarity ratings 
were predicted from the four factors of amplitude and 
phase spectra difference scores for the unweighted pitch 
codes, the difference score for the mean number of con-
tour reversals, and the surface correlation of the rhythm 
code. These variables significantly predicted listeners’ 
ratings, R = .44, p = .01, although none of the individual 
variables contributed significantly. All of these variables, 
however, provided marginal predictive power (all p’s 
between .10 and .20). 

Discussion

Overall, this study converges with the findings of 
Experiment 1, demonstrating that similarity ratings for 
pairs of equitemporal melodies were predictable primar-
ily from factors based on the Fourier analysis model and 
secondarily, from the oscillation model. Accordingly, 
these studies strongly support the idea that listeners are 
sensitive to cyclic pitch information in melodic contours, 
and use such information in determining the perceived 
similarity of melodies.

This study also provides compelling support for the 
idea that perceived contour similarity can be driven by 
two factors, one based on pitch information and a sec-
ond based on rhythmic patterning. This result is most 
easily discernible by the fact that the predictive power of 
rhythm pattern similarity was diminished in this study, 
both in terms of its simple correlation with similarity 
ratings and through its nonsignificant role in the mul-
tiple regression analysis. Given that this study employed 
equitemporal melodies that, by definition, do not con-
tain any rhythmic variation, this result is exactly what 
one might anticipate. Put differently, removal of rhyth-
mic information in the melodies themselves had the 
selective effect of removing the predictive power of 
rhythmic similarity on listeners’ ratings. The fact that the 
simple correlation between the rhythmic code surface 
correlations and the equitemporal stimuli was margin-
ally significant is at first blush nonintuitive. However, 
further reflection suggests that this result can be under-
stood by realizing that the similarity ratings in this study 
were strongly related to the ratings of Experiment 1 
(indicating the importance of pitch change information 
in contour perception). Accordingly, it would have been 
unrealistic to anticipate that rhythmic surface information 

3The astute reader will note that the equitemporal melodies were, at 
least on a “beat” level, slightly sped up relative to the previous experi-
ment. Because the original melodies contained numerous notes that 
were metrical subdivisions (i.e., of shorter duration) of the musical beat 
(which was 500 ms), equating the durations of all of the melody notes 
has the unfortunate consequence of increasing (dramatically in some 
cases) the overall length of the equitemporal versions relative to their 
rhythmically complex counterparts. As such, decreasing the “beat” of 
each note of the equitemporal melody correspondingly decreases the 
length of these new versions, making them closer (although not equiv-
alent) to the duration of the original melodies.
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would be totally unrelated to similarity ratings. Rather, 
it is more reasonable to expect a selective diminution of 
this effect, as opposed to a total removal.

Also converging with Experiment 1, this study confirmed 
the finding of a relation between the phase spectra differ-
ence scores for the weighted pitch codes and listeners’ simi-
larity ratings. The replication of this finding is provocative 
in that it does suggest that listeners are, on some level, 
attuned to the relatively timing within the melody of the 
up-down (or down-up) patterns of pitch change, and do 
use such information in their contour assessments.

Together, Experiments 1 and 2 also support Schmuck-
ler’s (1999) claim that the calculation of a derived similar-
ity measure based on contour complexity judgments is a 
viable approach for quantifying the perceived similarity 
of melodic contours. Such support is provided by the fact 
that the same model of contour (the amplitude and phase 
spectra values produced by a Fourier analysis) remained 
effective in predicting similarity judgments regardless of 
whether such judgments were gathered directly (as in the 
current work) or indirectly (as in Schmuckler, 1999). For-
tunately, the current context allows for a more explicit 
comparison of employing direct versus derived similarity 
measures procedures. Specifically, it is possible to present 
the folk melodies used in the previous two studies to lis-
teners, and ask them to provide contour complexity judg-
ments, as in Schmuckler (1999) and Eerola et al. (2006). 
These complexity judgments can then be used to calculate 
a derived similarity measure, with these derived similari-
ties then compared to the current models of contour simi-
larity as well as the direct similarity judgments of 
Experiments 1 and 2 themselves.

Experiment 3: Contour Similarity From Contour 
Complexity Judgments

The primary goal of Experiment 3 was to determine 
whether similarity judgments based on contour com-
plexity ratings are comparable to direct similarity judg-
ments. Towards this end, listeners heard both the 
rhythmically diverse and equitemporal folk melodies of 
the previous studies and provided contour complexity 
judgments for these melodies. These complexity judg-
ments were then used to derive similarity ratings between 
the melodies, and then predicted from the various theo-
retical models of described earlier.

Method

Participants

The sample of listeners consisted of 25 undergraduate 
students (M age = 20.8 years, SD = 2.0), who received 

either course credit in introductory psychology for par-
ticipating or who volunteered their time. Although these 
listeners were not initially screened for musical training, 
they did evince a range of musical experience. Specifically, 
listeners had an average of of 9.7 years (SD = 4.7) of 
experience on an instrument or voice, spent 3.0 hours/
week (SD = 3.4) involved in music making activities, and 
listened to music for an average of 17.4 hours/week (SD = 
24.4). All listeners reported normal hearing.

Experimental Apparatus, Stimuli, and Procedure

Stimuli consisted of the rhythmically complex and equit-
emporal versions of the folk melodies employed in 
Experiments 1 and 2, and made use of the same appara-
tus as in the previous two studies. On each trial listeners 
heard a melody, after which the computer prompted for 
a rating of the complexity of the melody’s contour on a 
“1” (“not at all complex”) to “7” (“very complex”) scale. 
After listeners typed in their response, the computer 
paused for 400 ms, and the next trial began automati-
cally. Overall, listeners completed two blocks of 48 ran-
domly ordered trials, with each block containing four 
repetitions of the 12 rhythmically diverse melodies and 
the other block containing four repetitions of the 12 
equitemporal melodies, with the order of these two 
blocks (rhythmic then equitemporal versus equitempo-
ral then rhythmic) counterbalanced across listeners. 
Unfortunately, a programming error resulted in the loss 
of the data for the first block of trials. Fortunately, 
because block order was counterbalanced, the end result 
of this error was that a variable that was initially intended 
to be a within-subjects factor (rhythmic versus equitem-
poral melody) was transformed into a between-subjects 
variable (12 listeners contributed ratings for the rhyth-
mic stimuli and 13 listeners produced ratings for the 
equitemporal stimuli). After completing all of the trials, 
listeners were debriefed as to the purposes of the exper-
iment. The entire experimental session lasted approxi-
mately 30 minutes.

Results

Complexity ratings for each listener for the rhythmic 
and equitemporal melodies were averaged across the 
four repetitions and analyzed in a two-way analysis of 
variance (ANOVA), with the within subject factor of 
melody (melody 1, melody 2 . . . melody 12) and the 
between-subjects factor of rhythm type (rhythmic versus 
equitemporal). Although this analysis does not investi-
gate the primary experimental hypotheses (i.e., whether 
or not derived similarity ratings based on contour com-
plexity ratings of individual melodies are comparable to 
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direct similarity ratings of melodic contours), it does assess 
whether the complexity ratings for the different melodies 
varied across rhythm type. This analysis revealed a main 
effect for melody, F(11, 253) = 5.69, MSE = 2.72, p < .001, 
but no effect for rhythm type, F(1, 23) = 0.03, MSE = 
5.83, n.s., and no interaction between the two factors, 
F(11, 253) = 0.64, MSE = 2.72, n.s. 

Following Schmuckler (1999), similarity ratings based 
on these complexity judgments were calculated by creat-
ing a single complexity vector for each melody, produced 
by aggregating ratings across the listeners, and then cor-
relating these complexity vectors. This procedure resulted 
in two sets of 66 correlations, representing derived con-
tour similarity between all pairs of rhythmic and equit-
emporal melodies. Overall, the derived similarity scores 
from these two sets of melodies were strongly related, 
r(64) = .60, p < .001; accordingly, a third set of derived 
similarity scores were created by averaging the rhythmic 
and equitemporal scores. All three of these contour simi-
larity measures were then predicted from the predictors 
employed in the previous experiments. 

Table 1 presents the results of these predictions. Over-
all, the observed pattern of correlations strongly con-
verges with the previous studies. Replicating both earlier 
experiments, derived similarity ratings were predictable 
from both amplitude and phase spectra difference scores 
for the weighted, but not the unweighted, pitch codes. 
The oscillation model also predicted listeners’ ratings, 
with mean interval size correlating with similarity values. 
Also similar to the previous experiments, the surface cor-
relation of the rhythmic code predicted contour similar-
ity, with this relation diminished (i.e., marginally 
significant) for the equitemporal melodies. Finally, the 
derived similarity ratings for the rhythmic and equitem-
poral melodies of this experiment were related to the 
similarity ratings of Experiments 1 and 2, with r(64) = 
.51, p < .001, for the rhythmic stimuli, and r(64) = .64, p 
< .001, for the equitemporal stimuli.

Given the presence of multiple correlates for these 
similarity values, multiple regression analyses were per-
formed to assess the relative strengths of these predic-
tors. Specifically, the three sets of similarity scores were 
predicted from the amplitude and phase spectra differ-
ence scores for the weighted pitch codes, the mean inter-
val size difference scores, and the surface correlations of 
the rhythmic codes. For the rhythmic stimuli, derived 
similarity scores were significantly predicted from these 
four variables, R = .55, p < .001, with two factors con-
tributing significantly – the amplitude spectra differ-
ence scores, B = -.08, b = -.29, p < .05, and the mean 
interval size difference scores, B = -.12, b = -.24, p < .05. 
For the equitemporal stimuli, derived similarity scores 

were also predictable from these four variables, R = .67, 
p < .001, with three of the four factors contributing to 
this prediction – amplitude spectra difference scores,  
B = -.08, b = -.27, p = .01, phase spectra difference 
scores, B = -.31, b = -.24, p < .05, and mean interval size, 
B = -.25, b = -.49, p < .001. Finally, the averaged rhythmic 
and equitemporal similarity values were also predictable 
from these factors, R = .676, with three factors contrib-
uting significantly—amplitude spectra difference scores, 
B = -.08, b = -.31, p < .005, phase spectra difference 
scores, B = -.26, b = -.23, p < .05, and mean interval size, 
B = -.19, b = -.42, p < .001. 

Discussion

The primary result of this experiment was that contour 
complexity ratings of individual melodies produced sim-
ilarity values that are comparable to direct similarity rat-
ings of pairs of melodic materials. Most notably, the degree 
of overlap in the amplitude spectra of melodies produced 
by a Fourier analysis of the pitch content of these melodies 
provided a reasonable prediction of perceived similarity, 
regardless of whether such similarity was assessed through 
direct or indirect techniques. Such a finding provides 
strong support for the notion that cyclic pitch information 
is an important component of listeners’ percepts of con-
tour, and furthermore, that such cyclic information can 
be assessed via time series techniques. 

In keeping with the earlier experiments, this study also 
observed an impact for the overlap of phase spectra infor-
mation in predicting similarity, as well as for one of the 
parameters of the oscillation model. The fact that both 
phase and the oscillation models once again correlated 
with derived similarity is particularly noteworthy in that 
this was the first context in which all these factors con-
tributed significantly to perceived similarity, as assessed 
via multiple regression. The significance of these results 
will be more fully explored in the General Discussion. 

This study did reveal important differences as a func-
tion of direct versus indirect similarity measures. One 
such distinction is the fact that correlations between the 
direct similarity ratings of Experiments 1 and 2 and the 
derived similarity ratings of Experiment 3 were not as 
strong as the correlation between different samples of 
direct similarity judgments (i.e., Experiments 1 and 2). 
As such, derived similarity measures are clearly not fully 
interchangeable with direct similarity assessments. One 
possible reason for this difference might involve the 
means of deriving similarity scores from complexity rat-
ings. Because individual listeners’ complexity ratings 
were aggregated for each melody, with these aggregate 
melodic complexity scores then correlated, the resulting 
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similarity scores are strongly susceptible to individual 
differences in the use of the subjective rating scale. 
Although gathering multiple repetitions for each stimu-
lus induces some measure of stability on an individual 
subject level, this analysis nevertheless can be strongly 
influenced by outlying values produced by particular 
listeners. In contrast, both Experiments 1 and 2 employed 
similarity ratings averaged over 16 (Experiment 1) and 
18 (Experiment 2) listeners, and thus likely contains a 
far greater degree of stability. 

A second explanation for this difference, and certainly 
not a mutually exclusive one, arises because similarity mea-
sures from Experiments 1 and 2 were (presumably) pro-
duced by direct comparisons of the melodic contour, 
whereas similarity scores for Experiment 3 were filtered 
through the task of rating melodic complexity. As discussed 
by Schmuckler (1999), musical, or in this case melodic, 
complexity is, in and of itself, a psychologically intricate 
concept—one that has been a topic of a great deal of 
research in its own right (Arkes, Rettig, & Scougale, 1986; 
Conley, 1981; Eerola et al., 2006; Konečni, 1982; Rohner, 
1985; Williams, 2004). Accordingly, the divergence between 
these sets of ratings might highlight those factors that are 
intrinsic to the notion of melodic complexity, but have 
little to do with contour structure per se.

In this vein, it is interesting to note that one important 
difference between the direct and indirect similarity mea-
sures was the lack of a contribution by the surface correla-
tion of the rhythm codes to the multiple regression model 
predicting derived similarity. One possibility is that, rela-
tive to the pitch variation, the rhythmic variation of these 
melodies was fairly simple; hence, the role of rhythm in 
driving complexity was reduced. Subsequent work might 
profitably investigate this idea, systematically varying the 
degree of variability in pitch and rhythm across a set of 
melodies, and looking at the impact of this manipulation 
on both complexity ratings as well as predictions of 
derived contour similarity. 

General Discussion

Three experiments examined the impact of pitch and 
rhythm factors on listeners’ direct and indirect similarity 
judgments of melodic pairs. Within each of these catego-
ries, there was evidence that some of the highlighted fac-
tors played a role in perceived contour similarity. The 
relative degree of success for these factors has a variety 
of implications for our understanding of melodic con-
tour processing.

One of the primary findings of this work is its demon-
stration that the degree of convergence in the cyclic pitch 
content between melodies, as indexed by the amplitude 

spectra produced by a Fourier analysis of a representation 
of the pitch contour of the melody, was correlated with 
perceived contour similarity. This result replicates the 
model initially proposed by Schmuckler (1999), and 
extends these ideas by demonstrating that the Fourier 
analysis model is applicable to longer, more naturalistic 
rhythmically complex melodies. Moreover, these findings 
converge with related research (e.g., Eerola & Bregman, 
2007; Eerola et al., 2006; Prince et al., 2009a) in providing 
compelling evidence for the viability of time series analy-
ses as tools for understanding melodic structure.

One surprising finding in this work was the recurrent 
effect for phase information in predicting contour simi-
larity. As already discussed, Schmuckler (1999) found 
that phase was inconsistent in predicting contour simi-
larity, with this factor playing a role for simple tonal 
melodies that were explicitly written to contain certain 
phase relations, but not for more complex 12-tone rows. 
Similarly, Prince et al. (2009a) also found an inconsis-
tency in phase predictions, with the similarity of short 
(about 17 notes) but not long (about 35 note) melodies 
predicted by phase relations. In contrast, all three experi-
ments in this project demonstrated a correlation between 
phase difference scores and similarity ratings. Clearly, it 
seems that there is a role for phase relations in contour 
similarity, with this role (presumably) varying with spe-
cific parameters of a melody. As just mentioned, although 
specific parameters are as yet unclear, based on Prince et 
al.’s results, one possibility might involve melodic length. 
One goal of future work will be to address this finding 
more thoroughly, providing a systematic quantification 
and manipulation of melodic structure and looking at 
its impact on phase predictiveness.

One of the most important and novel findings of this 
work was the fact that for both the amplitude and phase 
spectra difference scores, employing a weighted versus 
unweighted pitch code had a large effect on predicting 
contour similarity. In understanding this difference it 
must be remembered that one important consequence 
of weighting pitch events by their individual durations 
is that it changes the framework under which the result-
ing frequency information is interpreted. Specifically, 
unweighted pitch codes capture cyclic information in a 
time frame employing the melody itself as the unit of 
analysis. In contrast, weighted pitch codes capture cyclic 
information in a more absolute time frame, given that 
durations are coded (albeit in arbitrary units).

Accordingly, these findings convincingly demonstrate 
that the cyclic information involved in the contours is 
perceived by listeners in a set time frame. The impor-
tance of timing information for phase differences is rela-
tively easy to understand in that phase, by definition, is 
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sensitive to timing aspects of the cyclic information cap-
tured in a Fourier analysis. The fact that the amplitude 
spectra information also required this timing informa-
tion is somewhat more intriguing, in that this informa-
tion captures the strength of the up-down-up patterns 
in a contour, but not their timing (e.g., the difference 
between up-down-up and down-up-down). The most 
obvious explanation here, though, is that it is not as 
much the time frame that is important, but rather, that 
weighting captures important rhythmic variation in 
when pitch changes occur; this aspect will be returned 
to shortly.

Accordingly, the inclusion versus noninclusion of tim-
ing information in the pitch code will have little impact 
on amplitude spectra information, an idea supported by 
the fact that differences scores based on amplitude spec-
tra information were highly similar (see Table 2). Dura-
tion information, however, will influence phase spectra 
relations in its potential to change the relative timing 
relations of the cyclic patterns highlighted by a Fourier 
analysis; this idea is supported by the relatively weak 
(albeit significant) correlation between phase spectra 
difference scores for the weighted and unweighted pitch 
codes. As such, the finding that the weighted pitch spec-
tra information predicted listeners’ ratings suggests that 
listeners did make use of the relative timing of cyclic 
contour information. Put differently, and somewhat 
more simply, the difference between an up-down-up and 
a down-up-down melodic pattern is an important aspect 
of perceived contour relations, even though they both 
contain the same strength of their cyclic information.

Given the success of the Fourier analysis model in this 
and other work, it is important to consider the limita-
tions of this approach as a general model of melodic 
contour. In a very basic sense, the application of time 
series analyses to quantifications of melodic structure 
raises some troubling questions. For one, there are any 
number of problematic issues related to the appropriate-
ness of applying this mathematical technique to a dis-
crete series (see Schmuckler, 1999, for discussion of this 
concern). To put it simply, the use of Fourier techniques 
in this context is admittedly a nonstandard application. 
Because signal processing techniques such as Fourier 
analysis assume that the signal to be analyzed is theoreti-
cally temporally infinite, analysis of truncated signals 
potentially produce multiple artifacts. To counteract 
many of these artifacts, given that any analyzable signal 
is in practice finite, various techniques such as window-
ing and detrending of the signal are routinely employed, 
although it should be noted that such techniques intro-
duce their own artifacts. It is important to remember, 
though, that the primary consequence of any of these 

potential problems is that the quantification of the cycli-
cal information contained in the signal becomes noisy 
and distorted. On a practical basis, the end result of such 
distortion would be to mask, or possibly eliminate, the 
ability to uncover an effect of this signal processing 
information vis a vis perceived contour similarity. 
Accordingly, the fact that these studies, as well as previ-
ous work (Prince et al., 2009a; Schmuckler, 1999), still 
observed these relations makes these findings all the 
more striking, given that they likely underestimate the 
predictive power of such factors.

A second, more conceptual concern arising out of the 
use of this procedure is that presenting Fourier analysis 
as a model of melodic structure raises, at least on some 
level, the question of whether this is literally a model of 
the psychological processing of melodic contours. In 
other words, does the success of the Fourier analysis 
approach imply that listeners are literally conducting 
Fourier transforms of melodic contours upon hearing 
them, and using the resulting output as a means of 
understanding these melodies? 

Although it might be tempting to answer this question 
affirmatively, it does seem unlikely that there is a literal 
Fourier transform occurring upon hearing a melody. 
Instead, it seems more probable that when listeners hear 
a melody they simply take note of the general up-down 
(or down-up) pattern of this melody, and how quickly 
such patterns occur. Few such cycles over the course of 
the melody will be characterized by an amplitude spectra 
with greater power in its lower harmonics with particu-
lar phase values, whereas a large number of up-down 
cycles will result in a greater dispersion of power to the 
upper harmonics of the amplitude spectra. Such rough 
characterizations of the differing frequency information 
could then be used in explicit contour comparisons, or 
in individual contour complexity judgments. As an aside, 
it is worth noting that the idea of simultaneously noting 
the prevalence of low versus high frequency variation is 
conceptually akin to a model of contour processing pro-
posed by Gilden, Schmuckler, and Clayton (1993). These 
authors argued that the perception and discrimination 
of visual fractal contours could be modeled by simulta-
neously noting the presence and strength of smooth, low 
frequency information relative to the availability and 
strength of high frequency, point-to-point fluctuations. 
Such a dual component model seems especially appro-
priate for these findings, although future work needs to 
address this possibility more explicitly before such an 
argument could be accepted. 

Moving beyond the results pertaining to the Fourier 
analysis model, another noteworthy finding of this study 
is the failure of the surface correlation of the raw pitch 
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codes to predict perceived similarity. This result is 
important in that it undermines Quinn’s (1999) music-
theoretic model of contour similarity (Shmulevich, 
2004), in which the surface correlation of melodic con-
tours was predictive of contour similarity, and contra-
dicts the results of Prince et al. (2009a), who did find an 
effect for surface correlation. What accounts for this 
divergence in findings? With regard to Prince et al. 
(2009a), the most obvious difference between these proj-
ects is that the current study focused on auditory con-
tour perception, whereas Prince and colleagues examined 
crossmodal perception. The idea that crossmodal com-
parisons might drive observers to focus more on surface 
parameters is intriguing, and worthy of study in its own 
right. Speculatively, one implication of such a result is 
that it suggests that such surface parameters might rep-
resent an amodal invariant of such contours. Hence, in 
crossmodal contexts such aspects are critical; in contrast, 
in a unimodal context attention can be given to alterna-
tive sources of structure.

As for the findings of this work and Quinn (1999), the 
most obvious distinction between these two sets of studies 
involves the length of the stimuli employed, with Quinn’s 
work using melodies that were shorter than Schmuckler 
(1999) and the current project. As has been suggested else-
where (Schmuckler, 2004), the length of the stimuli is 
important in that shorter melodies are not especially ame-
nable to time series analyses, given that they provide 
amplitude and phase spectra with few components. In 
contrast, shorter melodies are particularly appropriate for 
analyses of surface patterns, given that listeners can easily 
and accurately retain such surface information in short 
term memory. As melody length increases, however, the 
relative importance of these two contour characterizations 
will reverse. Because surface characteristics of melodies 
will become increasingly difficult to remember, listeners 
may then make increasing use of more generalized infor-
mation, such as the relative strengths of low and high fre-
quency fluctuations. Accordingly, there will be a 
corresponding increase in the use of Fourier spectra infor-
mation. If true, then as suggested by Schmuckler (2004), 
the relative importance of the two different characteriza-
tions will vary systematically with melody length, as well 
as potentially providing an arena of overlap in which both 
models are applicable to melodies of the same length. Cur-
rent work is exploring this possibility.

Another novel result of these studies involves their 
demonstration of a crucial role for rhythm in contour 
perception. This influence was apparent in two ways. 
First, there was the result that the Fourier analysis infor-
mation based on the rhythmically weighted, but not the 
unweighted, pitch codes consistently predicted listeners’ 

perceived similarity. Accordingly, it appears important 
that the pitch codes specifically contain rhythmic varia-
tion, suggesting an obvious role for this parameter in 
contour similarity. Second, there are the results regarding 
the predictive power of an explicit copy of the rhythmic 
information. In this case, it is noteworthy that the rhythm 
code surface correlations predicted similarity ratings in 
Experiment 1, and for the rhythmic stimuli of Experi-
ment 3, but decreased in predictive power in Experiment 
2 and for the equitemporal stimuli of Experiment 3. The 
fact that the influence of this variable diminished in 
Experiment 2 is not surprising – these contours were, 
after all, equitemporal. The fact that rhythmic influence 
disappeared in its predictive power for both sets of stim-
uli in Experiment 3 (based on the multiple regression 
analyses) is somewhat surprising, and as has already 
been discussed, might indicate that because of the rela-
tive simple rhythmic pattern of these melodies, it did not 
influence judgments of melodic complexity. Overall, 
however, these findings do suggest an important general 
role of rhythm in contour perception.

These studies also assessed a third family of character-
izations of contour structure, based on the degree of 
oscillation present in the melodies. Interestingly, although 
there was some support for this type of factor in these 
studies, it was clearly not overwhelming. On the one 
hand, all three experiments demonstrated a role for con-
tour oscillations, with contour reversal information 
important in Experiments 1 and 2, and interval size infor-
mation playing a role in Experiment 3. These findings do 
replicate Schmuckler’s (1999) finding of an impact for 
such information, and converge with Eerola and Breg-
man (2007), who observed an effect of “interval content,” 
which incorporates a measure of the mean interval sizes 
contained with a contour, on contour similarity.

On the other hand, contour oscillation did not contrib-
ute significantly to the multiple regression predictions of 
Experiments 1 or 2, although they did play a role in 
Experiment 3. Accordingly, the importance of this factor 
is inconsistent, at best, with this variation undermining 
the power of this variable as a critical component of con-
tour descriptions. Again, there are precedents for such 
variability. In Schmuckler (1999), for instance, although 
interval size information was consistently related to con-
tour similarity (contour reversals were not uniformly 
predictive of these ratings across experiments), this factor 
failed to contribute significantly in multiple regression 
contexts. Unfortunately, an explanation for why this 
model is so variable in its predictive power is not imme-
diately forthcoming. Clearly, future work should continue 
to explore this factor, attempting to delineate the contexts 
in which this factor asserts itself.
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Finally, it also should be highlighted that there is at 
least one family of factors that are conspicuous in their 
absence in the current studies as predictors of contour 
similarity. This family of factors can best be thought of 
as arising from “structural aspects” of musical passages, 
and includes aspects such as the organization of pitch 
and temporal information into complex tonal and met-
ric hierarchies of stability. Given the great deal of atten-
tion paid to tonal (e.g., Krumhansl, 1990, 1991, 2000a; 
Tillman et al., 2000) and metrical (e.g., Jones, 1976; Ler-
dahl & Jackendoff, 1983; Palmer & Krumhansl, 1990; 
Povel, 1981, 1984) hierarchies in music cognition gener-
ally, and in melodic perception specifically (e.g., Boltz, 
1989a, 1989b; Dowling, 1978; Jones & Boltz, 1989; 
Schmuckler, 2004, 2009), it is clearly surprising that such 
hierarchal information has not been included in this 
analysis of contour perception. 

Once again, however, evidence for such factors is 
mixed. For example, Eerola and colleagues (Eerola & 
Bregman, 2007; Eerola et al., 2006) recently demon-
strated that such factors play a role in both contour com-
plexity judgments and contour similarity, and tonality 
(in the form of pitch distributional information) has 
been implicated in the perception of melodic similarity 
as well (Eerola et al., 2001). Similarly, van Egmond, Povel, 
and Maris (1996) found that the perceived similarity of 
melodies and their transpositions was driven by the fre-
quency distance, as well as the tonal relatedness, of the 
original melody and its transposition. More generally, 
both contour and tonal information have been high-
lighted as fundamental factors in the perceptual organi-
zation of, and subsequent memory for, an array of 
melodic materials (Dowling, 1978; Schmuckler, 2009). 
As such, one might expect that tonal information would 
play a role in contour similarity.

Regardless of this expectation, though, explicit tests 
for a role of tonal and metric hierarchy similarity in pre-
dicting contour similarity have often failed to observe an 
effect. For instance, Schmuckler (1999) found no influ-
ence of tonal similarity on contour similarity. Moreover, 
a series of analyses examined whether the observed con-
tour similarity ratings were predicted by the tonal and 
metric relatedness of the melodies, using similarity mea-
sures based on the Krumhansl-Schmuckler key-finding 
algorithm (Krumhansl, 1990) employed by Schmuckler 
and Tomovski (2005), and metric similarity measures 
derived from the metric hierarchy studies of Palmer and 
Krumhansl (1990) and employed in Schmuckler (1990). 
Although not formally presented in this paper, the 
Appendix presents the correlations between the similar-
ity ratings of these studies and a family of tonal and met-
ric hierarchy similarity measures. Inspection of these 

correlations reveals only marginal predictive power for 
either Experiments 1 or 2 based on tonal and metric 
hierarchy similarity. For Experiment 3, some of the met-
ric hierarchy factors were predictive of the rhythmic and 
averaged stimuli, along with a single significant correla-
tion for one of the tonal hierarchy measures. Accordingly, 
the power of tonal and metric hierarchy information to 
predict contour similarity in this context is, at best, weak, 
and more conservatively, neglible.

What accounts for this lack of any strong effect for the 
otherwise critical factors of tonal and metric hierarchies? 
For tonality, the obvious explanation is that both the 
current studies and Schmuckler (1999) explicitly reduced 
the importance of this factor by playing all melodies in 
highly related keys or using atonal melodies. The reason 
tonality was reduced in these projects was, essentially, 
pragmatic. In Western music, pitch structure and tonal-
ity plays a predominant role in listeners’ apprehension 
of music, and sometimes dominates listeners’ percep-
tions of musical passages (Prince, Schmuckler, & Thomp-
son, 2009b; Prince, Thompson, & Schmuckler, 2009). As 
such, tonal effects were negated so as to provide the best 
possible context in which to assess the impact of the vari-
ous contour specific models. Clearly, however, future 
work should integrate these two factors into a more 
encompassing structural model of melodic information, 
a fact that has been recognized already (Dowling, 1978; 
Schmuckler, 2004, 2009).

As for the failure of metric hierarchy information, this 
result is admittedly curious, and not open to an easy 
explanation. One possibility is that although metric 
hierarchy information was available in these studies, this 
information was not as salient in these studies as the 
pitch information, with listeners simply more attuned 
to pitch changes than temporal changes. As just men-
tioned, the idea of a predominant status for pitch infor-
mation for (at least Western) listeners has been 
supported by other findings (Hannon & Trehub, 2005; 
Prince et al., 2009b; Prince et al., 2009; Thompson, 1994; 
Thompson et al., 2001). Prince et al. (2009), for instance, 
looked at the relation between tonal and metric hierar-
chy information in a series of experiments, and found 
that pitch information predominated in listeners’ per-
cepts of these passages. Moreover, listeners’ judgments 
of these passages continued to show an influence of 
pitch information even when participants were explic-
itly instructed to ignore this factor, and speeded classi-
fications of tonal and metric events revealed asymmetric 
classifications, with pitch content influencing judg-
ments of metric information, but not the reverse. Taken 
together, these findings are consistent with the idea that 
pitch information is highly salient in melodic processing, 
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and dominates listeners’ apprehension of musical 
information.

Of course, the preceding discussion of additional fac-
tors that might predict contour similarity raises one of 
the thornier concerns with this project, namely, the fact 
that although significant, the current models in general, 
and the Fourier analysis model in particular, did not on 
an absolute basis account for an especially large percent 
of the variance of listeners’ perceived contour similarity. 
Although undeniably true, there is an array of responses 
that could be given to this criticism. First, and harkening 
back to a point made earlier, given the mathematical 
limitations inherent in the application of Fourier analy-
sis to the melodies examined here, it is likely that this 
estimation of the importance of cyclical information is 
indeed conservative. Second, and stemming from a more 
practical basis, the level of predictive power of this study, 
although modest, has been replicated across experiments 
in the current project, and is consistent with previous 
work on auditory and crossmodal contour similarity 
(Eerola & Bregman, 2007; Eerola et al., 2006; Eerola et 
al., 2001; Prince et al., 2009a; Schmuckler, 1999). Third, 
and most critically, it has been assumed throughout this 
work that the quantification of cyclical information will 
not capture all of the variance in perceived contour simi-
larity. As stated repeatedly, because melodies are com-
plex, multidimensional auditory objects, an adequate 
characterization of their structure, and of melodic simi-
larity, will rely on multiple simultaneously operative 
models. Accordingly, it is not worrisome that the range 
of identified factors contributing to contour similarity 
in this project is not exhaustive.

Ironically, admitting this limitation leads to the obvi-
ous next question of what additional properties might 
be of interest in providing a more comprehensive char-
acterization of melodic contour. In this regard, some 
candidates arise through a closer examination of the 
actual melodies employed in this study. Intriguingly, 
such an exercise reveals a number of characteristics that 
may be important. For instance, various subsets of the 
melodies share a common melodic pattern at the begin-
ning: M01 and M11 contain a major 6th interval at the 
start, whereas M10 and M12 contain a perfect 4th inter-
val, and M01, M02, M03, M04, M05, and M07 all con-
tain stepwise motion in their first three notes. Similarly, 
M04 and M11, and to a lesser degree M07, all share a 
common tessitura, and M02, M05, and M07 all have 
exactly the same rhythm in their first measures, along 
with a significant repetition of a particular rhythmic 
motif (dotted 8th followed by a 16th note) more gener-
ally. Some or all of these factors could potentially play 
a role in percepts of contour similarity. As an aside, it is 

important to realize that some of these aspects are at 
least partially captured by various measures employed 
in this project. The similarity of the opening intervallic 
patterns will contribute (somewhat) to the degree of 
surface correlation between the melodies, and the simi-
larity of the rhythmic structure is captured to an extent 
by the rhythm surface correlations.

Of more theoretical interest, however, is a fundamen-
tal distinction between the classes of factors tested in this 
project, and the types of properties just outlined. As ini-
tially suggested, one of the underlying goals of this work 
is to develop and test characterizations of global param-
eters intended to capture a given property as applied to 
the contour as a whole. In contrast, the present set of 
melodic properties encompasses primarily local contour 
parameters, such as the initial interval content, the 
occurrence of rhythmic motifs, and so on. Ironically, 
then, the recognition of the possible importance of such 
parameters reintroduces local parameters back into the 
discussion, as well as raising the obvious issue of the 
general roles of global versus local factors. Leaving aside 
the obvious difficulties stemming from a consistent and 
theoretically motivated rationale for what local param-
eters might be of interest (e.g., do we focus on the initial 
two note, or three note, or X note interval?), future work 
might clearly profit from combining both global and 
local levels of analysis. As an aside, this focus on, and 
recognition of, a simultaneous role for both local and 
global factors has proven fruitful in analyses of models 
of tonality (Abe & Okada, 2004; Brown & Butler, 1981; 
Matsunaga & Abe, 2005; Yoshino & Abe, 2004; see 
Schmuckler, 2009, for a review).

In sum, the current paper explored the efficacy of a 
series of models of contour structure in predicting lis-
teners’ direct and indirect similarity judgments. These 
studies converge with other work in demonstrating that 
perceived contour structure is multiply determined, 
driven by a variety of factors. Moreover, contour similar-
ity is but a single component of the question of what 
drives melodic similarity, a question that has come under 
increasing scrutiny in recent years (e.g., Cambouropou-
los, 2001; Deliège, 2001; Eerola et al., 2001; Hofmann-
Engl, 2001, 2004, 2005; Lamont & Dibben, 2001; 
Ockelford, 2004; Toiviainen & Eerola, 2002). Under-
standing the factors that underlie such perceived similar-
ity are critical in that such processes form the basis of 
category formation, and thus provide a compelling arena 
for testing the generalizability of theories of category and 
concept formation (e.g., Markman & Gentner, 1996, 
1997; Medin, Goldstone, & Gentner, 1993; Posner & 
Keele, 1968; Rosch & Mervis, 1975; Tversky, 1977). 
Accordingly, the success of models of musical features, 
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and their role in driving musical similarity, will hopefully 
shed insight into a very fundamental aspect of everyday 
perceptual and cognitive functioning. 
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