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Spring 1999, Vol. 16, No. 3, 295-326 university of California 

Testing Models of Melodic Contour Similarity 

MARK A. SCHMUCKLER 

University of Toronto at Scarborough 

In two experiments, descriptions of melodic contour structure and pre- 
dictions of perceived similarity relations between pairs of contours pro- 
duced by a number of different models are examined. Two of these mod- 
els, based on the music-theoretic approaches of Friedmann (1985) and 
Marvin and Laprade (1987), characterize contours in terms of interval 
content or contour subset information. The remaining two approaches 
quantify the global shape of the contours, through the presence of cycli- 
cal information (assessed via Fourier analysis) and the amount of oscilla- 
tion (e.g., reversals in direction, pitch deviations) in the contours. Theo- 
retical predictions for contour similarity generated by these models were 
examined for 20th century, nontonal melodies (Experiment 1) and sim- 
plistic, tonal patterns (Experiment 2). These experiments demonstrated 
that similarity based on Fourier analysis procedures and oscillation mea- 
sures predicted a derived measure of perceived similarity, with both vari- 
ables contributing relatively independently; the music-theoretic models 
were inconsistent in their predictive power. These results suggest that 
listeners are sensitive to the presence of global shape information in me- 
lodic contour, with such information underlying the perception of con- 
tour structure and contour similarity. 

contour (the pattern of rising and falling intervals within a 
melody) has long been recognized as a fundamental component of 

musical perception. Contour has traditionally been a concern in psycho- 
logical (e.g., Deutsch, 1969; Dowling, 1978) and music-theoretic (e.g., 
Marvin, 1991, 1995; Morris, 1987, 1993; Narmour, 1990; Schoenberg, 
1967; Toch, 1948/1977) analyses of musical structure and has given rise to 
extensive bodies of research on melody identification (e.g., Deutsch, 1972; 
Dowling, 1984; Dowling & Hollombe, 1977; Idson & Massaro, 1978; 
Massaro, Kallman, &c Kelly, 1980), memory for musical passages (e.g., 
Bartlett &c Dowling, 1980; Croonen, 1994, 1995; Croonen & Kop, 1989; 
DeWitt & Crowder, 1986; Dowling, 1978, 1982, 1991; Dowling & Bartlett, 
1981; Dowling & Fujitani, 1971; Dowling & Harwood, 1986), and so on. 
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296 Mark A. Schmuckler 

Given that contour is so crucial to melodic processing, a quantitative 
theory of contour structure would prove an invaluable tool, aiding in mu- 
sic-theoretic analyses and in determining how listeners perceive, organize, 
respond to, and remember musical passages. For example, one significant 
consequence of such a theory would be its potential use in determining 
similarity relations between musical passages. Such an innovation would 
have important implications for music-theoretic and psychological investi- 
gations of musical structure, providing predictions for theoretical struc- 
tural similarity as well as psychological judgments of perceptual similarity. 

Although numerous psychologists and music theorists have evinced an 
interest in contour, only a few formal descriptions of contour structure 
have been proposed. One approach to studying contour has been to cat- 
egorize melodies according to feature information (Adams, 1976; Kolinski, 
1965; Seeger, 1960; Polansky & Bassein, 1992). For example, Adams (1976) 
describes a "melodic contour typology" in which contours are defined by a 
set of boundary properties (the initial, final, highest, and lowest pitches 
within the contour), with three possible relations existing between bound- 
ary pitches (greater than, equal to, and less than). Combinations of these 
boundaries and relations are then used to identify primary contour fea- 
tures such as overall melodic slope, and secondary contour features such as 
repetitions of the highest or lowest pitch (see Adams, 1976). Although such 
systems provide a thorough typological description of a contour, they fall 
short as models of contour because they ultimately result in a simple list of 
melodic features. Whereas such a list may help in characterizing groups of 
melodies (e.g., how many songs within a corpus contain feature X), it is of 
limited utility in judging contour relatedness. 

In a similar vein, Morris (1993) describes a model of contour relations 
in which a given contour is transformed through the reiterative application 
of a reducing algorithm into its fundamental or prime form. This algorithm 
repeatedly deletes notes from the contour, ultimately focusing in on the 
initial, final, maximum, and minimum points of the contour. According to 
Morris, these primes "play a role analogous to that of the Schenkerian 
background" (p. 218) and thus function as the underlying contour of the 
phrase in question. Similarity relations between prime forms of different 
contours can then be determined and used to highlight structural equiva- 
lence relations between different contours. Although this approach moves 
beyond the more generic taxonomic category schemes of other approaches 
(e.g., Adams, 1976; Kolinski, 1965; Seeger, 1960), its notion of contour 
similarity is restricted in that it ultimately looks only for contour equiva- 
lence, with different contours designated as being from either the same or 
different contour class. Unfortunately, this scheme does not contain any 
explicit or implicit means for quantifying varying degrees of similarity, an 

intuitively important psychological aspect of contour. Moreover, because 
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of its reductive nature, this algorithm sacrifices information at the musical 
surface in delineating the underlying form of the contour at its highest (or 
deepest) hierarchical level. It is unknown whether equivalence on such an 
abstract basis factors into listeners' on-line processing of musical passages. 
Accordingly, this approach may have limited utility in defining perceived 
similarity relations of melodic contours. 

A final set of theories have defined more explicit, continuous measures 
of similarity among melodic contours (Friedmann, 1985, 1987; Marvin &c 
Laprade, 1987). These models have proposed a set of procedures for quan- 
tifying the contour of short melodic passages, with specific application to 
20th century music. Friedmann (1985, 1987) suggests two such analytic 
tools: the contour adjacency series (CAS) and contour class (CC). The CAS 
codes the relative pattern of directional changes (e.g., ascending or descend- 
ing), although it ignores the (actual or relative) distance between adjacent 
notes of a melody, and results in a sequence of +'s and -'s representing the 
pattern of rises and falls within the contour. This series is then succinctly 
described in a two-element contour adjacency series vector (CASV) that 
summarizes the total number of ascending and descending intervals in a 
given contour. The top half of Figure 1 displays the CAS and CASV for two 
six-note contours analyzed by Friedmann (1985),1 taken from Schoenberg's 
Fantasy for Violin and Piano, op. 47, measures 1 and 2, and the Trio sec- 
tion of the Minuet from the Suite, op. 25, measures 1 and 2. 

Friedmann's (1985) second analytic tool, the CC, provides a more com- 
plete description of contour, describing the relative pitch relations between 
all adjacent and nonadjacent elements. In the CC, the lowest pitch is coded 
as 0, the highest pitch as n - 1, with n equal to the number of unique 
pitches in the contour. The contour class notations for the melodic frag- 
ments of Figure 1 are also shown. 

The individual pitch relations within the CC define a series of contour 
intervals (CIs) that describe the relative pitch intervals between adjacent 
and nonadjacent notes within the CC. For example, the CI for the adjacent 
interval 1 - » 2 of the first melody in Figure 1 is +1, the CI for the next 
adjacent interval 3 - > 5 is +2, and the CI for the nonadjacent interval 4 - > 
0 is -4. The entire set of CIs for a given contour produces the contour 
interval array (CIA), which notes the frequency of each CI, with positive 
(ascending) and negative (descending) intervals separated by a slash. Simi- 
lar to the CAS, the CIA can be characterized by a pair of two-element 
vectors, the CCVI and the CCVII. The CCVI summarizes the ascending 
versus descending character of a contour and is produced by multiplying 

1. For all theoretical explications, it will be assumed that comparisons are being made 
between contours of equivalent lengths. Although comparisons of unequal contour lengths 
are possible with these tools, such comparisons require generalizations that will not be 
discussed here. 
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298 Mark A. Schmuckler 

Fig. 1. The CAS, CC, CI, CIA, and CCV, as well as the CASV, CCVI, and CCVII difference 
measures proposed by Friedmann (1985) for two sample contours. 

Contour Adjacency Series (CAS) : 

Contour Adjacency Series Vector (CASV) : 
< 3,2 > < 3, 2 > 

Contour Class (CO: 
< 1, 2, 3, 5, 4, 0 > < 1, 4, 2, 3, 5, 0 > 

Contour Intervals (C/s) : 

Positive Negative Positive Negative 
1 2 3 45|t 2 3 4 5 t 2 34S|l 234 5 

1-2 1-3 1-4 1-5 1-0 2-0 3-0 4-0 5-0 1-2 1-3 1-4 1-5 1-0 2-0 3-0 4-0 5-0 
2-3 2-4 2-5 5-4 2-3 3-5 2-5 4-3 4-2 
3~4 3-5 
			 4j£ 
			 

1 3 
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Contour Interval Array (CIA) : 
<3, 3,2, 1,0/2, 1, 1, 1, 1> <3, 2, 2, 1,0/2,2, 1, 1, 1> 

Contour Class Vectors: 
CCVI < 19, 16 > CCVI < 17, 18 > 
CCVII < 9, 6 > CCVII < 8, 7 > 

Similarity Measures: 
CASV Difference = 0 
CCVI Difference = 2 
CCVII Difference = 1 

the frequency of each CI by the size of the CI and then adding together all 
ascending and descending intervals. The CCVII provides a more general 
assessment of the contour, taking into account frequency and direction of 
CIs irrespective of size; this measure is produced by adding the frequencies 
of all ascending and descending intervals. The CASV, the CCVI, and CCVII 
all assess contour similarity by creating a difference score between corre- 
sponding digits of the CASV, CCVI, or CCVII; calculation of these values 
is also shown in Figure 1. Finally, these equivalence relations are to be 
calculated with both contours in their original (prime) form, as well as 
when one contour is in prime form and the other contour has been trans- 
formed via inversion, retrograde, or retrograde-inversion operations. 

Marvin and Laprade (1987) describe an alternative approach to contour 
analysis. Using Morris's (1987) "contour space" as their starting point, 
these authors propose a contour-segment (CSEG) representation that 
orders the elements of a contour from lowest to highest (e.g., 0 to n - 1), 

This content downloaded from 171.67.229.79 on Tue, 9 Apr 2013 20:36:10 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Testing Models of Melodic Contour Similarity 299 

with n again equal to the number of distinct pitches within the contour. 
Subsets of the CSEG are possible (CSUBSEGs), with these subsets consist- 
ing of any combination of contiguous and noncontiguous pitches. Figure 2 
shows the two contours of Figure 1 (here labeled CSEGs), along with three 
sample four-element CSUBSEGs. It should be emphasized that although 
this figure presents four-element CSUBSEGs,2 subsets can be of any length, 
ranging from 2 to n - 1. If necessary, the CSUBSEG is translated to consist 
of integers from 0 to n - 1, with this translation equivalent to the initial 
CSUBSEG representation. 

With this CSEG representation, one can generate a comparison matrix 
(COM-matrix), which is a two-dimensional array displaying the results of 
pitch comparisons between all elements in the contour. The results of the 
comparisons are listed as + (second note higher in pitch than the first), 0 
(second note equal to the first), and - (second note less than the first). 
Figure 2 also displays the COM-matrices for the two contours. 

So far, the relation between Friedmann's (1985) and Marvin and Laprade's 
(1987) theories is fairly transparent. Marvin and Laprade's CSEG repre- 
sentation is equivalent to Friedmann's CC, and the COM-matrix can easily 
be used to generate the CAS, CASV, and CCVII. The CAS appears immedi- 
ately to the right of the center diagonal of the COM-matrix, and the CCVII 
can be calculated by totaling the +'s and -'s of the upper-half of the COM- 
matrix. The COM-matrix also gives rise to a unique measure of similarity, 
called the contour similarity function (CSIM). The CSIM is calculated by 
counting the correspondences (for either the upper or lower half matrix) of 
the positions of the +'s and -'s between two COM-matrices, with this num- 
ber divided by the total number of positions. As with Friedmann (1985), 
CSIM values can be calculated between contours in prime form and be- 
tween one prime contour and one transformed (inversion, retrograde, and 
retrograde-inversion) contour. The CSIM value for the two sample con- 
tours is also shown in Figure 2. 

Marvin and Laprade (1987) also suggest a contour similarity measure 
called the contour mutually embedding function (CMEMB), which counts 
the number of CSUBSEGs that are mutually embedded in two contours, 
and divides this overlap by the total number of CSUBSEGs. Figure 3 pre- 
sents the calculation of the CMEMB for the sample contours, showing all 
four-element CSUBSEGs for these contours, in 0 to n - 1 notation when 
necessary. The total for each CSUBSEG pattern is then determined, and the 
number of CSUBSEGs shared by both contours is divided by the total 
number of CSUBSEGs. The CMEMB can be calculated for CSUBSEGs vary- 

2. In total there exist 15 four-element contiguous and noncontiguous subsets of a six- 
element set. The formula for calculating the total number of subsets of a given length (m) in 
a larger set (n) is: n\ I ( m\ * (n-m)l ) (Marvin & Laprade, 1987; Rahn, 1980). 
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300 Mark A. Schmuckler 

Fig. 2. The CSEG, three sample CSUBSEGs of length 4, the COM-matrix, and the CSIM 
measure, proposed by Marvin and Laprade (1987) for two sample contours. 

ing in length from 2 to n - 1, and for one contour in prime form and a 
second contour in prime, retrograde, inversion, or retrograde-inversion form. 

Both Friedmann (1985) and Marvin and Laprade (1987) assume these 
measures define equivalence relations, such that contours with comparable 
structural descriptions are psychologically associated. For example, 
Friedmann (1985) justifies the need for contour descriptions of 20th cen- 
tury music not because of any paucity of theories describing pitch and seg- 
class relations (Forte, 1973; Rahn, 1980), but because contour is more 
readily perceived by the majority of listeners than pitch class information, 
and thus is more likely to characterize the listener's experience. 

Although rigorous and systematic, this focus on the interval content or 
contour subset information neglects a crucial aspect of melodic contour - 

namely, the global shape of the contour. Although global contour shape 
can be discerned from these representations (imagine the CC or CSEG as 
line drawings), neither model adequately characterizes this information. 
One aspect of global shape that may be important is the degree of oscilla- 
tion (e.g., up and down movement) in the contour. For example, the sample 
contours of Figures 1-3 are distinguishable in that the second contour seems 
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Fig. 3. The CMEMB, proposed by Marvin and Laprade (1987), for two sample contours. 

to contain more oscillation than the first. One method of quantifying the 
degree of oscillation is to simply count the number of reversals in direction 
in this contour; in this case, the first contour has one reversal (ascend - > 
descend) whereas the second contour contains three reversals (ascend - > 
descend - > ascend - > descend). An additional measure is based on the dis- 
tance in pitch (semitone) space encompassed by these reversals.3 For the 
first sample contour, the ascending motion encompasses 25 semitones (Bl>3 
- > B5), whereas the descending motion covers 28 semitones (B5 - » G3). In 
comparison, the ascending and descending motions of the second contour 
cover 13, 10, 11, and 15 semitones. 

Numerous possible quantifications can be derived by using this infor- 
mation; two such measures are the mean pitch interval size and the summed 
pitch interval size for all intervals in the contour, with these values charac- 

3. It would also be possible to count intervals in contour space, using the same contour 
coding procedure as that of Friedmann and Marvin and Laprade. In fact, these two meth- 
ods give highly comparable results. 
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terizing oscillation somewhat differently. Because mean pitch interval in- 
formation is normalized by the number of contour reversals, it treats each 
ascending and descending motion within the contour equally; thus, mean 
pitch interval is related to individual interval size within the contour. In 
contrast, because summed pitch interval information aggregates across all 
intervals, it provides a global measure of pitch divergence within the con- 
tour. For both interval measures (as well as for the reversals), similarity is 
calculated using difference scores for these values. 

The distinction between the two pitch interval measures can be appreci- 
ated by considering the mean and summed interval information for the two 
sample contours. The first sample contour has a mean pitch interval value 
of 26.5 semitones, whereas the second contour has a value of 12.5 semitones. 
In contrast, the first sample contour has a summed interval value of 53 
semitones, whereas the second contour has a value of 49 semitones. Thus, 
the summed pitch interval measure suggests a greater similarity between 
the contours than does the mean pitch interval measure. 

An alternative characterization of the global shape of a contour involves 
looking for the presence of repeated or cyclical patterns. For example, the 
contours of Figures 1-3 are distinguishable in terms of the number of re- 
peated patterns in each. Along these lines, the first contour is characterized 
by a single repetition of an ascending and descending motion, whereas the 
second contour contains two cycles of up-down motions. Again, intuitively 
it seems that this difference could be important in one's perception of these 
contours, as well as being related to one's sense of the similarity between 
the contours. 

One typical procedure for quantifying cyclical information involves the 
application of Fourier analysis techniques. Described simply, Fourier analysis 
converts a signal from the temporal domain into the frequency domain, 
providing a mathematical decomposition of the signal into a set of har- 
monically related sine waves. Each of these sine waves is characterized by 
an amplitude (strength) and phase (timing relation) value, with the relative 
amplitudes and phases of the sine wave components providing a quantita- 
tive measure of the different cyclical patterns within the signal. Consider- 
ing all these frequency components, Fourier analysis provides a general 
description of the shape of the contour, taking into account both slow 
moving, low-frequency movement such as general trend, as well as any 
high frequency, point-to-point fluctuation in the contour. 

Figure 4 displays the results of Fourier analyzing the sample contours of 
Figures 1-3, listing the amplitude and phase spectra for cyclical compo- 
nents of one, two, and three repetitions per pattern. These spectra support 
the qualitative descriptions just provided. Based on its amplitude spectrum, 
the first contour is characterized strongly by a single repetition per cycle (Har. 
1/RJ, with weaker components for two and three repetitions per cycle. In 
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Fig. 4. The results of Fourier analysis of the two sample contours. Shown are the real (Am), 
imaginary (B ), amplitude (R J, and phase (OJ components produced by the Fourier analysis 
and the correlations between amplitude and phase spectra. 

contrast, the second contour consists of a strong component of two cycles per 
repetition (Har. 2/RJ, with weaker components at one and three cycles. 

Fourier analysis has a number advantages for contour analysis. One 
strength is that it provides an obvious measure of similarity - contours with 
comparable cyclical structure are perceived as related by listeners. The de- 
gree of association between contours can be assessed in any number of 
ways. One procedure involves correlating amplitude and phase spectra. A 
correlation coefficient is attractive in that it compares only relative pat- 
terns of ups and downs, collapsing across absolute differences in the spec- 
tra, and has associated tables of statistical significance. It is possible, how- 
ever, that the magnitude of differences in the spectra are meaningful. To 
capture this aspect, one can calculate an absolute difference score between 
corresponding components of the spectra, with contour similarity based 
on the amount of difference between individual frequency components, or 
on an average difference calculated across all harmonics. Regardless of the 
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associative measure used, the implication is that the degree of association 
between contours will be related to the perception of contour similarity. 

A second advantage is that the output of a Fourier analysis is largely 
invariant in the face of different transformations of the contour. For ex- 
ample, Fourier analysis is essentially scale independent, such that a con- 
tour consisting of large interval leaps will produce comparable phase and 
amplitude spectra to a similar contour made up of small steps. In the same 
vein, the low-frequency components of the output of a Fourier analysis 
will be relatively invariant in the face of melodic ornamentation, such as 
grace notes, passing tones, and neighbor tones; higher frequency compo- 
nents will, however, vary somewhat. In both of these cases, the coding of 
the input representation becomes important. For scale independence, dif- 
ferent codings produce outputs that can vary from highly similar to identi- 
cal. As for melodic ornamentation, the degree of similarity between out- 
puts will vary depending on whether or not the input representation contains 
rhythmic information, although both rhythmic and nonrhythmic inputs 
should produce highly related outputs; further consideration of rhythm in 
contour analysis is taken up in the general discussion. Irrespective of these 
final issues, it seems clear that Fourier analysis of contour is a potentially 
powerful technique. 

Applying Fourier procedures to the analysis of melodic contours is not 
without some analytic pitfalls, however. One serious concern is that Fou- 
rier analysis requires a variety of assumptions, some of which are violated 
in this application. For example, one important assumption is that the se- 
ries being analyzed via Fourier techniques is an extended sequence that 
represents the sampling of an infinitely periodic signal; in contrast, melodic 
contours are short and discrete. This concern has both theoretical and prac- 
tical implications. Theoretically, the concern is that because the series to be 
analyzed does not meet this criterion, the results of the analysis, in terms of 
its ability to forecast future cyclical patterns, is suspect. Practically, the 
concern is that with a short, discrete series, a Fourier analysis will be dis- 
proportionately influenced by information at the beginning and ending of 
the sequence, with such "edge effects" distorting the Fourier spectra, also 
resulting in decreased predictive power. 

In defense of the theoretical viability of this application, it should be 
remembered that the goal here is not the typical predictive forecasting com- 
monly associated with time-series analyses (the family of analytic proce- 
dures to which Fourier analysis belongs). In contrast, Fourier analysis is 
being used strictly as a convenient tool to quantify the presence of repeti- 
tive patterns in a melody. Fundamentally, Fourier analysis is simply a math- 
ematical decomposition procedure that is applicable to any numerical se- 
ries. Although care must be taken in interpreting the output of this procedure, 
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there is no reason why this technique cannot be used to provide a descrip- 
tion of any numerical series, including a melodic contour. 

As for the practical considerations, one procedure used to control edge 
effects involves mathematically transforming the series by using windowing 
techniques (e.g., Hamming or Kaiser windows). Such windows reduce edge 
effects by weighting the beginning and ending of a sequence less than the 
middle of the sequence. Unfortunately, given the length of the series tested 
in this work, such procedures actually alter the shape of the contours them- 
selves; thus, similarity measures based on such altered contours are of ques- 
tionable utility. As such, it is ultimately difficult to control edge effects, 
meaning that the results of a Fourier analysis of contour may be too dis- 
torted to characterize the melody adequately. As indirect support for the 
viability of this approach, Fourier analysis has proven effective in analyz- 
ing short, discrete series of tonal and rhythmic information (Chiappe & 
Schmuckler, 1997; Cuddy & Badertscher, 1987; Cuddy & Thompson, 1992; 
Krumhansl, 1990; Krumhansl & Schmuckler, 1986; Palmer & Krumhansl, 
1990; Schmuckler, 1990, 1997). It is an open question, though, whether 
Fourier analysis procedures will also be applicable to melodic contours. 

In summary, a number of procedures for quantifying contour and pre- 
dicting contour similarity have been developed. Two of these approaches, 
those of Friedmann (1985) and Marvin and Laprade (1987), are related in 
that they grow out of the same music-theoretic tradition, adopting similar 
assumptions. For example, these theories are concerned with what Polansky 
and Bassein (1992) call the "combinatorial contour," which consists of the 
interval relations between both contiguous and noncontiguous contour el- 
ements, with all such information important for determining similarity re- 
lations. Additionally, both approaches accept the idea that transformations 
of a melody, such as retrograde, inversion, and retrograde-inversion, not 
only have psychological reality but can also underlie perceived contour 
associations. Thus, despite differences in these theories (see Friedmann, 
1987, for a cogent comparison of these approaches), they share many char- 
acteristics. Two different approaches, involving Fourier analysis and the 
degree of oscillation in a contour, have also been developed. These ideas 
represent a more dramatic departure from the tradition of Friedmann (1985) 
and Marvin and Laprade (1987) in that they are concerned with "linear con- 
tour" (Polansky &c Bassein, 1992), focusing on an analysis of global shape. 

The goal of these studies was to test the ability of these models to predict 
perceived contour similarity. Toward this end, all of these models quanti- 
fied individual contours and predicted similarity relations between pairs of 
contours. These similarity measures were then compared with a listener- 
generated derived measure of perceived contour similarity. The decision to 
use a derived measure of similarity, as opposed to gathering direct similar- 
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ity ratings of pairs of melodies, was in large part pragmatic. Pilot work 
suggested that listeners had great difficulty providing direct similarity rat- 
ings for pairs of melodies (using the stimulus melodies of Experiment 1, 
described later), with listeners frequently reporting that they had forgotten 
the first melody by the end of the second melody. In keeping with these 
reports, there was little intrasubject or intersubject reliability for contour 
similarity ratings. Thus, an alternative procedure for generating similarity 
data was used, involving gathering contour ratings of individual melodies, 
and then intercorrelating aggregate ratings to produce a derived similarity 
matrix. This approach is a widely accepted alternative to a direct similarity 
rating procedure (Kruskal & Wish, 1978; Wish & Carroll, 1974), having 
been used successfully to generate proximities for factor analysis and mul- 
tidimensional scaling applications (Banks 8c Gregg, 1965; Guttman, 1966; 
Weisberg & Rusk, 1970). 

These experiments also tested the generality of these models by examin- 
ing a range of melodic contours. Experiment 1 examined a set of 20th 
century, nontonal pieces. Whereas both the Fourier analysis and oscillation 
measures are neutral in terms of the style of music to which they can be 
applied, the theories of Friedmann (1985) and Marvin and Laprade (1987) 
were developed specifically for the analysis of 20th century music; thus, 
these stimuli represent the most appropriate test for these models. Experi- 
ment 2 provided a subsequent test of these models by examining simple 
tonal melodic patterns. Such a test is critical in that successful prediction of 
perceived similarity across the divergent stimulus sets of the two experi- 
ments establishes the general applicability of these models to the analysis 
of melodic contour per se, as opposed to a more limited application to a 
specific musical corpus. 

Experiment 1: Similarity of 20th-century Tone Rows 

METHODS 

Subjects 

Sixteen students (mean age, 19.6 years), who either volunteered their services or were 
students in an introductory psychology course at the University of Toronto at Scarborough 
participated in this study, receiving either extra course credit or $7 for participating. All 
listeners were musically trained, with a mean of 7.4 years of formal training, a mean of 3.0 
hr per week engaged in music making, and a mean of 18.2 hr per week spent listening to 
music. All listeners reported normal hearing, and none indicated that they were familiar 
with the passages of music played during the experiment. 

Experimental Apparatus and Stimuli 

Stimuli were generated with a Yamaha TX816 synthesizer, controlled by an IBM-com- 
patible 286-MHz computer, connected with a Roland MPU-401 MIDI controller. The tim- 
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bre used by the synthesizer was harmonically complex, approximating the sound of a piano 
(see Schmuckler, 1989). All tones were input into a Mackie 1202 mixer, and amplified and 
presented using a BOSS MA- 12 micro-monitor, at a comfortable listening level. 

The stimuli for this experiment consisted of 12-note melodies, based on the prime row 
form of twenty 20th-century 12-tone pieces (these rows are shown in Figure 5). Each trial 
consisted of a presentation of one contour, with the duration of each note equal to 400 ms. 
On each trial, the lowest note of the contour was set to a random pitch between Fl3 and F^, with the remaining notes of the contour similarly transposed. Listeners heard four repeti- 
tions (blocks) of each contour, with contours presented in a different random order for each 
listener. 

Procedure 

Listeners were told they were participating in an experiment on contour perception. 
They were informed that on each trial they would hear a 12-note contour and that they 
should rate the complexity of this contour, using a 9-point scale, with 1 indicating not very 
complex and 9 indicating very complex. Listeners typed their responses on the computer 
keyboard, and as soon as their response was entered, the computer began the next trial. 
Listeners were free to take breaks between the blocks of trials. Subsequent to the final block 
of trials, listeners completed a musical background questionnaire and were debriefed as to 
the purpose of the experiment. The entire experiment lasted approximately 30-45 min. 

Fig. 5. The 20 stimulus contours used in Experiment 1. 
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RESULTS 

The first step in the analysis involved quantifying contour similarity on 
the basis of the various models. All of these models produce multiple mea- 
sures of similarity. Friedmann (1985) provides differences in the CASV, the 
CCVI, and the CCVII; because they are difference scores, these values rep- 
resent dissimilarity, with small numbers reflecting similarity and large num- 
bers dissimilarity. Marvin and Laprade (1987) measure similarity via CSIM 
and CMEMB values. For both of these theories, measures are calculated 
between two contours in prime form, as well as between one contour in 
prime form and the second contour in retrograde, inversion, or retrograde- 
inversion form. Thus, contour similarity can be based on similarity be- 
tween any of these forms, or the maximum similarity value across these 
forms; in fact, Marvin and Laprade (1987, pp. 237, 245) assume that con- 
tour similarity is a function of this "maximum" value. Fourier analysis 
also produces multiple similarity measures, including correlations of the 
amplitude or phase spectra for pairs of contours, as well as difference scores 
between the harmonic components for the amplitude and phase spectra. 
Finally, contour oscillation also produces multiple similarity values, involving 
difference scores based on the number of contour reversals, the mean pitch 
interval, and the summed pitch interval. Again, because these are differ- 
ences they produce dissimilarity values, and hence should be negatively 
related to perceived similarity. Table 1 summarizes these different mea- 

Table 1 
Summary of Contour Similarity Predictors 

Predictor Contour Form 

Friedmann 
CASV Prime Retrograde Inversion Retrograde-Inversion Maximum 
CCVI Prime Retrograde Inversion Retrograde-Inversion Maximum 
CCVII Prime Retrograde Inversion Retrograde-Inversion Maximum 

Marvin and Laprade 
CSIM Prime Retrograde Inversion Retrograde-Inversion Maximum 
CMEMB Prime Retrograde Inversion Retrograde-Inversion Maximum 

Fourier Analysis 
Amplitude Correlation Difference Score 
Phase Correlation Difference Score 

Oscillation 
Reversals 
Average Interval Size 
Summed Interval Size 

Note- CASV = Contour Adjacency Series Vector, CCVI and CCVII = Contour Class 
Vectors, CSIM = Contour Similarity Function, CMEMB = Contour Mutually Embedding 
Function. 
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M01: 11 10 6720195438 
M12: 95 10 4 11 863 1207 
M16: 012467 10 3598 11 

Friedmann: 
Diff. Score: CASV CCVI CCVII 
1* Contour I MOI MÔÏ M12 I I MOI MOI M12 I I MOI MOI M12 
2nd Contour M12 M16 M16 M12 M16 M16 M12 M16 M16 

Prime 0 5 5 33 165 198 6 32 38 
Retrograde 3 2 2 131 67 34 24 14 8 
Inversion 3 2 2 131 67 34 24 14 8 

Retro-Inver 0 5 5 33 165 198 6 32 38 
Maximum 3 5 5 131 165 198 24 32 38 

Marvin & Laprade: 
CSIM CMEMB 

Contour 2nd Contour Form 2nd Contour Form 
lrt/2"1 Prime Retro Inver R-Inv Max Prime Retro Inver R-Inv Max 

M01/M12 0.52 0.48 0.34 0.55 0.55 0.35 0.27 0.22 0.42 0.42 
M01/M16 0.24 0.76 0.58 0.42 0.76 0.20 0.40 0.41 0.18 0.41 
M12/M16 0.42 0.58 0.70 0.30 0.70 0.11 0.53 0.44 0.12 0.53 

Fourier Analysis: 
MOI M12 M16 

fl, <EM 
			 Jg, flu 
			 ft. flu 
Har. 1 I 1.567 61)27 


			 
Ï/751 -1.434 


			 
T26Ï -0.953 

Har. 2 1.341 -1.155 0.939 0.568 1.530 -1.434 
Har. 3 1.067 0.896 0.425 -0.197 0.755 -0.111 
Har. 4 0.382 -1.237 0.520 -1.328 0.520 1.328 
Har. 5 0.270 0.155 1.156 1.489 1.064 -0.292 
Har. 6 0.833 -0.000 0.667 0.000 0.333 -0.000 

Correlation Average Différence Score 
ÏVmOl.mlîï rfm01.ml61 *Vml2.ml6'> 
			 r(m01.ml2> r(m01.ml61 rfml2.ml61 

Amplitude I 0.437 0.530 0.639 0.403 0.373 0.306 
Phase 0.174 -.0122 -0.349 0.950 0.880 1.168 

Oscillation Measures: 
Raw Value 
			 Difference Score 
			 

mOl m!2 m!6 
			 mOl, m!6 mOl, m!6 ml2, m!6 
Reversals I 5 7 4 


			 
2 Ï 3 

Mean PI 5.5 5.25 5.8 0.25 0.30 0.55 
Summed PI 33 42 29 9 4 13 

Fig. 6. The various theoretical similarity measures defined by Friedmann (1985), Marvin 
and Laprade (1987), the Fourier analysis approach, and the oscillation model, as applied to 
three stimulus contours (MOI, M 12, Ml 6) from Experiment 1. 

sures.4 Figure 6 shows the similarity measures produced after applying these 
models to three of the stimulus contours of Figure 5. The end result of 
these applications was a series of half-matrices indicating the similarity (or 
dissimilarity) between all melodic contours. 

4. The CMEMB values were actually calculated as the total percent overlap, aggregating 
across CSUBSEGs of length 2 to 11. It is also, however, possible to calculate this value as an 
average percent overlap for CSUBSEGs of length 2 to 1 1 individually. In fact, all analyses 
for the CMEMB model were calculated in both ways and provided virtually identical pat- 
terns. Accordingly, only the results for the total percent overlap are presented. For CASV, 
CCVI, and CCVII models, these values represent the average absolute difference score be- 
tween corresponding (e.g., positive and negative) digits in the vectors. 
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The next step involved producing the perceived similarity matrix. First, 
contour ratings were analyzed in a two-way analysis of variance (ANOVA), 
with the within-subject variables of contour (Contour 1, Contour 2, ... 
Contour 20) and repetition (Block 1, Block 2, Block 3, Block 4). This analysis 
revealed main effects of contour, F(19,285) = 2.18, MSE = 4.64, p < .005, 
suggesting that complexity ratings differed across the contours, and repeti- 
tion, f (3,45) = 4.61, MSE = 6.00, p < .01, with ratings for Block 1 lower 
than ratings for Blocks 2-4. There was no interaction between the two 
variables, F(57,855) = 1.03, MSE = 2.95, n.s. Contour ratings were then 
averaged across repetition for each listener and used to create contour vec- 
tors by aggregating the ratings for each contour across listeners. These 16- 
element contour vectors were then intercorrelated, producing a half-ma- 
trix of correlations representing contour similarity (Kruskal & Wish, 1978; 
Wish & Carroll, 1974). 

Finally, regression techniques fit the theoretical models to contour simi- 
larity; Table 2 displays the results of these analyses. For the music-theoretic 
models, two measures predicted similarity judgments - the maximum value 
of the CCVI, r(188) = .182, p < .05, and the maximum value of the CCVII, 
r(188) = .179, p < .05. Although significant, these findings must be viewed 
skeptically; because these measures index dissimilarity, they should have 
correlated negatively with contour similarity. Both global measures fared 

Table 2 
Summary of Correlations for Experiment 1 

Contour Form 

Predictor Prime Retrograde Inversion Retrograde-Inversion Maximum 

Friedmann 
CASV .024 -.011 -.011 .024 -.018 
CCVI .036 .124 .124 .036 .182* 
CCVII .014 .115 .115 .014 .179* 

Marvin and Laprade 
CSIM -.033 -.001 .033 .001 .042 
CMEMB .078 -.082 -.019 .003 .046 

Fourier Analysis Correlation Difference Score 
Amplitude .324** -.238** 
Phase .026 -.053 

Oscillation 
Reversals -.251** 
Average Interval Size -.084 
Summed Interval Size -.454** 

Note- CASV = Contour Adjacency Series Vector, CCVI and CCVII = Contour Class 
Vectors, CSIM = Contour Similarity Function, CMEMB = Contour Mutually Embedding 
Function. 

*p<.05. **/?<. 01. 
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better. For the Fourier analysis, amplitude spectra similarity predicted simi- 
larity judgments for both correlation, r(188) = .324, p < .001 and differ- 
ence score measures, r(188) = -.238, p < .001. Similarly, the number of 
contour reversals predicted similarity judgments, r(188) = -.244, p < .001, 
as did the summed interval size measure, r(188) = -.451, p < .001. 

Given that multiple variables correlated with similarity judgments, a fi- 
nal analysis looked at the interrelation of these variables in predicting con- 
tour similarity. Toward this end, a multiple regression analysis predicted 
derived similarity measures from predictors based on the number of rever- 
sals, the summed interval size, and amplitude spectra. For this last vari- 
able, the correlation measure of similarity was used, given that it had pro- 
duced the strongest correlation with the derived similarity judgments 
previously. Of the three predictors, summed interval size correlated signifi- 
cantly with amplitude spectra similarity, r(188) = -.326, p < .001 and with 
contour reversals, r(188) = .382, p < .001; amplitude spectra and reversal 
measures were unrelated, r(188) = -.110. Together, these three factors sig- 
nificantly predicted contour similarity ratings, R(186) = .495, p < .0001. 
Despite the significant intercorrelations between these factors, both ampli- 
tude spectra and summed interval size contributed significantly to the fit, 
with betas of .199 and -.352, ps < .005, respectively. In contrast, reversals 
did not add significantly to the regression equation, beta = -.088. 

DISCUSSION 

The primary finding of this study was that perceived contour similarity 
was predictable from similarity measures based on the presence of cyclical 
information, as adjudged by amplitude spectra similarity, and by the de- 
gree of oscillation, as indexed by the summed size of the pitch intervals 
outlined in contour changes. In contrast, neither Friedmann's (1985) nor 
Marvin and Laprade's (1987) model significantly predicted perceived simi- 
larity, suggesting that these models do not necessarily characterize this psy- 
chological aspect of contour. 

Fourier analysis was not uniformly powerful in its predictive value, how- 
ever. Phase information, in contrast to amplitude information, did not cor- 
relate with derived similarity. Whereas it is possible that phase information 
is simply unrelated to contour similarity, it is also possible that the com- 
plexity of these stimuli did not provide a clear sense of the phase relations 
of the cyclical components. If true, then similarity of simpler cyclical pat- 
terns with more distinct phase relations might show an effect of phase; 
Experiment 2 tested this hypothesis. 

For the oscillation measure, the best predictor was the summed interval 
size variable; although reversals in direction also correlated with similarity 
judgments, this variable did not contribute in the multiple regression model. 
As discussed earlier, summed interval size represents a more global contour 
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measure than does mean interval size. Accordingly, this result, combined 
with that of the amplitude spectra, suggests that listeners are sensitive to 
aspects of the overall shape of the contour and not to specific intervals 
within the contour. 

Although this experiment was successful in predicting contour similar- 
ity, it does contain some limitations. First, these models have only been 
applied to a particular corpus of music (20th century nontonal melodies). 
Although these stimuli were chosen to provide the most appropriate con- 
text for testing the music-theoretic models, this choice nevertheless raises 
concerns as to the generality of these findings. Second, despite the fact that 
the multiple regression model demonstrated reliable predictive power, the 
impact of any single model was at best modest, although the large number 
of comparisons (a 20 x 20 half-matrix) undoubtedly plays a role here. Both 
concerns can be addressed by replicating these results with a different stimu- 
lus set than that used in Experiment 1. A successful application of these 
models to different melodies, using an independent sample of listeners, pro- 
vides strong evidence in support of these approaches to the quantification 
of contour similarity. 

Experiment 2: Similarity of Simple Melodic Patterns 

Experiment 2 provided an opportunity for replicating Experiment 1, 
predicting similarity relations among simple tonal melodies. Use of such 
contours extends the generality of all of these models and provides another 
chance for the models of Friedmann (1985) and Marvin and Laprade (1987) 
to predict contour similarity. Moreover, if the phase information of the 
melodies of Experiment 1 was indistinct because of the general complexity 
of these melodies, then using simpler contours containing more distinct 
phase relations might now uncover a relation between phase spectra infor- 
mation and perceived contour similarity. 

METHODS 

Subjects 

Sixteen undergraduate students (mean age, 20.9 years) participated in this experiment, 
receiving either course credit in introductory psychology or $7 for participating. All listen- 
ers were musically trained, with a mean of 6.7 years of formal instruction, a mean of 3.7 hr 
per week currently involved in music-making, and a mean of 13.2 hr per week listening to 
music, and reported normal hearing. 

Experimental Apparatus, Stimuli, and Procedure 

Stimuli were generated and presented to listeners using the same equipment as in Experi- 
ment 1. These stimuli, shown in Figure 7, consisted of 20 tonal melodies designed to con- 
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Fig. 7. The 20 stimulus contours used in Experiment 2. 

tain cyclical information and simple phase relations. Listeners heard four randomly ordered 
blocks of 20 experimental trials, with the characteristics of the individual tones (note dura- 
tion and transposition) comparable to Experiment 1. Instructions and procedures for this 
study were the same as in Experiment 1. 

RESULTS 

Analyses proceeded along the same lines as in Experiment 1. The theo- 
retical models of Friedmann (1985), Marvin and Laprade (1987), the Fou- 
rier analysis approach, and the oscillation approach, were applied to the 
contours of Figure 7. These procedures produced a set of half-matrices, 
representing similarity (or dissimilarity) between all pairs of contours. 

Contour ratings were examined in a two-way ANOVA, with the vari- 
ables of contour (Contour 1, Contour 2, ... Contour 20), and repetition 
(Block 1, ... Block 4). This analysis revealed a main effect of contour, 
F( 19,285) = 38.84, MSE = 3.54, p < .001, indicating that the ratings varied 
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as a function of the contour, but no effect for repetition, F(3,45) = 0.45, 
MSE = 5.61, n.s. The interaction between the variables was significant, 
F(57,855) = 1.63, MSE = 1.94, p < .005. Inspection of this interaction 
revealed that, although the ratings for the contours varied across repeti- 
tions, they remained globally consistent, with, for example, highly rated 
contours receiving relatively high ratings across all four blocks. Accord- 
ingly, ratings were averaged across repetitions for subsequent analyses. 

Individual contour ratings generated contour similarity ratings by 
intercorrelating contour vectors, consisting of each listener's average rating 
of each contour. This similarity measure was then predicted by the theo- 
retical similarity measures already described; Table 3 displays the results of 
these comparisons. In this study, the maximum value of Friedmann's CCVI 
predicted similarity judgments, r(188) = .170, p < .05; unfortunately, be- 
cause this measure reflects dissimilarity, this relation should have been posi- 
tive rather than negative. For Marvin and Laprade's model, the maximum 
value for both CSIM and CMEMB measures predicted contour similarity, 
with rs(188) = .227 and .326, ps < .01, respectively, as did the similarity 
value for the inversion form of the CMEMB model, r(188) = .209, p < .01. 
For the Fourier analysis model, both correlation and difference scores mea- 
sures for the amplitude spectra again predicted perceived similarity ratings, 
r(188) = .220, p < .01, and r(188) = -.397, p < .001, respectively. In addi- 

Table 3 
Summary of Correlations for Experiment 2 

Contour Form 

Predictor Prime Retrograde Inversion Retrograde-Inversion Maximum 

Friedmann 
CASV .074 -.012 -.012 .074 .089 
CCVI .014 -.040 -.040 .014 .104 
CCVII .053 -.013 -.013 .053 .170* 

Marvin and Laprade 
CSIM -.115 -.063 .136 -.050 .277** 
CMEMB .000 .120 .209** .016 .326** 

Fourier Analysis Correlation Difference Score 
Amplitude .220** -.392** 
Phase .300** -.382** 

Oscillation 
Reversals -.108 
Average Interval Size -.081 
Summed Interval Size -.536** 

Note - CASV = Contour Adjacency Series Vector, CCVI and CCVII = Contour Class 
Vectors, CSIM = Contour Similarity Function, CMEMB = Contour Mutually Embedding 
Function. 

*p<.05. **/?<. 01. 
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tion, both correlation and difference score measures from the phase spec- 
tra predicted perceived similarity, r(188) = .300 and -.302, ps< .001. For 
the oscillation measures, in contrast to Experiment 1, contour reversals 
failed to predict similarity judgments, r(188) = -.108, although the summed 
pitch interval measure once again significantly predicted similarity, r(188) 
= -.536,p<.001. 

Because multiple models significantly predicted the derived similarity 
ratings, multiple regression analyses were once again used to assess the 
interrelations among the models themselves and to see how the variables 
combined in predicting perceived similarity. Initially, this analysis included 
all variables that (interpretably) predicted contour similarity, along with 
the contour reversal variable. This final variable was included on the basis 
of its role in the previous experiment. For the CSIM and CMEMB mea- 
sures, the maximum values were used, and for the amplitude and phase 
spectra variables, the difference score measures were used, given that these 
values were more predictive of contour similarity, based on the simple cor- 
relations. Table 4 gives the intercorrelation matrix between these predic- 
tors as well as the results of the multiple regression. Overall, these mea- 
sures tended to be related, a finding that is not surprising given that these 
variables generally predicted similarity judgments. Of more interest, how- 
ever, is the result of the multiple regression analysis, in which these six 

Table 4 
Interfactor Correlation Matrix, Averaging Across Prime, Retrograde, 

Inversion, Retrograde-Inversion, and Maximum Values, and the Results 
of the Multiple Regressions Predicting Perceived Similarity from the 

Various Models 

CMEMB .857** 
Reversals -.461** -.399** 
Summed PI -.191* -.306** .076 
Amplitude -.477** -.455** .375** .404** 
Phase -.671** -.642** .351** .266** .412** 

CSIM CMEMB Reversals Summed PI Amplitude 

Multiple correlation .604* * .602* * .601 * * 

Beta 
CSIM -.026 -.046 - 
CMEMB .030 .030 - 
Reversals .061 - - 
Summed PI -.414** -.420** -.426** 
Amplitude -.153* -.139a -.132a 
Phase -.228** -.224** -.214** 

Note - CMEMB = Contour Mutually Embedding Function, CSIM = Contour Similarity 
Function, PI = pitch interval. 

ap<.057. */?<.O5. **=/?<. 01. 
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variables significantly predicted contour similarity judgments, i?(183) = 
.604, p < .0001. Of these six variables, three contributed significantly: 
amplitude spectra similarity, phase spectra similarity, and summed pitch 
interval similarity (see Table 4). Two subsidiary analyses were performed. 
The first predicted similarity judgments from all variables except contour 
reversals, whereas the second predicted similarity judgments from only 
amplitude spectra, phase spectra, and summed pitch interval factors. Both 
of these analyses produced comparable results, with R(184) = .602 and 
R(186) = .601, ps < .001, respectively. 

DISCUSSION 

Replicating Experiment 1, listeners' perceived contour similarity was again 
predicted by measures indexing the global shape of the melody. The first 
measure was the summed distance (in semitones) covered by the various 
ascending and descending patterns within the contour. The second mea- 
sure involved the strength of the cyclical patterns within these contours; 
this information was indexed by the amplitude spectra of these melodies. 
Finally, a third measure of contour involved the phase relations between 
the cyclical components of these contours. This finding suggests that phase 
information can play a role in contour similarity with stimuli in which such 
information is clear and distinct. 

Another new finding in this study was that the maximum value for Marvin 
and Laprade's (1987) CSIM and CMEMB models reliably correlated with 
listeners' perceived similarity, although the results of the multiple regres- 
sion analyses do raise some concerns about these results. At face value, 
however, the fact that the maximum (and in one case inversion) model 
provided this fit does imply that listeners can perceive the inherent rela- 
tions between contour transformations such as prime and inversion/retro- 
grade, a finding that has been only weakly supported in previous work 
(e.g., Dowling, 1971, 1972; Dowling & Fujitani, 1971; Krumhansl, Sandell, 
& Sargeant, 1987). From a psychological stance, the most compelling sup- 
port for CSIM or CMEMB measures would involve significant fits between 
modeled and perceived similarity for both contours in prime (heard) form. 
Thus, combined with the implications of the multiple regression analyses, 
the psychological status of the CSIM and CMEMB constructs remains un- 
clear; such issues could be addressed in future work. 

General Discussion 

Taken together, these studies provide some insight into how to charac- 
terize, both structurally and psychologically, melodic contour. In these studies 
different models of contour were quantitatively developed, and the abili- 
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ties of these approaches to predict a derived measure of perceived contour 
similarity were compared. These models met with varied success, with one 
approach never predicting contour similarity, two models consistently pre- 
dicting contour similarity, and one sometimes related to similarity. 

Before discussing these models in detail, some methodological consider- 
ations should be explored. Methodologically, the most obvious concern 
with these studies involves the choice of using a derived measure of per- 
ceived similarity, as opposed to having listeners directly rate contour simi- 
larity. As mentioned earlier, the decision to use this paradigm was prag- 
matic, based on the findings of pilot work; this approach was justified and 
supported, however, by the literature on multidimensional scaling that sug- 
gests that derived similarity data (such as gathered here) produces scaling 
metrics comparable to more direct similarity measures. Nevertheless, 
whether or not the derived similarity judgments truly reflect perceived con- 
tour similarity per se remains an issue. 

It should be remembered, though, that any concerns regarding this simi- 
larity metric are applicable only to listeners' judgments and not to the models' 
predictions of similarity. All of the models were developed with the explicit 
purpose of directly measuring contour similarity; as such, the only issue 
regarding these models is whether or not the measures do, in fact, capture 
such similarity. Accordingly, a significant relation between listeners' judg- 
ments and the model's similarity assessments has the two-pronged effect of 
demonstrating the model's abilities to capture contour similarity and vali- 
dating the appropriateness of the derived measure of perceived similarity.5 
Admittedly, in situations in which a model fails to predict listeners' judg- 
ments, it is unclear whether the failure is due to an inadequacy in the model 
or a problem in the perceived similarity judgment; however, the fact that at 
least one model (and in some cases more than one) did successfully predict 
perceived similarity does shift the locus of the problem onto the predictive 
power of the remaining, unsuccessful models. Nevertheless, given these 
concerns, it would be reassuring if future work, using both direct (e.g., 
explicit comparisons of two contours) and indirect (e.g., derived similarity 
measures, memory confusion matrices) were to replicate these results. 

A second methodological consideration is that the indirect measure used 
in this study involved a rating of contour complexity, a psychologically 
complex component of a melody or a musical passage that may or may not 
capture the essence of contour, and one that has a rich history in aesthetics 
in its own right (e.g., Konecni, 1982). The response to this issue is much 

5. It is possible that a significant relation could occur because both the model and the 
derived similarity data are each related to a third parameter and not to an aspect of melodic 
contour per se. Unfortunately, without any theory, or at least intuition, of what this param- 
eter is, it is difficult to address this issue, although it does seem somewhat fortuitous (and 
admittedly unlikely) that both model and perceptual judgments would inadvertently mea- 
sure an unforeseen, and unknown variable. 
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along the lines just presented; contour similarity, as assessed by complexity 
judgments, was predictable from explicit models of this similarity. This 
result suggests that at the least, an important component of melodic con- 
tour per se can be captured by the psychological dimension of complexity, 
with this dimension playing a significant role in perceived similarity judg- 
ments. As indirect support for the importance of complexity as a funda- 
mental aspect of contour, Morris (1993) gives a central role to the dimen- 
sion of complexity in his algorithm for contour reductions, with the number 
of reiterations required of the algorithm to produce the contour's prime 
form (the contour's "depth") an explicit measure of the contour's complex- 
ity (see Marvin, 1995, for a discussion). Thus, there appears to be a strong 
relation between a contour's complexity and its underlying nature, although 
the two are not the same. 

Turning now to the findings regarding the specific tests of these models, 
the first question that could be raised involves why there was such varia- 
tion in the predictive power of these models. In many ways, all of these 
models are analytically elegant, identifying structural similarities between 
widely diverse melodic contours. One key aspect of the models, however, is 
the unit of analysis employed. For Friedmann's (1985) theory, similarity 
results from the overlap of two-note interval information, with similar con- 
tours containing comparable numbers of ascending and descending inter- 
vals of varying sizes. Marvin and Laprade (1987) assess contour similarity 
for units varying in size (at least for the CMEMB model) from two-note 
intervals up to contour subsets of almost the entire length. Moreover, and 
relatedly, both of these measures focus on combinatorial contour, includ- 
ing in their similarity metrics information concerning both contiguous and 
noncontiguous intervals. In contrast, both the Fourier analysis and oscilla- 
tion approaches focus on the linear contour, assessing the global shape of 
the contour, either in terms of the repeating patterns, or the amount of 
pitch deviation. Either of these variables - a focus on linear as opposed to 
combinatorial contour, or an analysis of global as opposed to local contour 
structure - could underlie the observed differences between the models. 

Unfortunately, it is not possible to distinguish fully between these possi- 
bilities with the current data; such distinctions ultimately await further 
work. In considering this question, though, it should be noted that virtu- 
ally all of the examples and analyses used by both Friedmann (1985) and 
Marvin and Laprade (1987) involve short contours of no more than about 
six notes. Longer contours, which contain much more constituent interval 
information, might be ultimately more difficult to retain, making the only 
information available to listeners global aspects such as shape, trend, and a 
general sense of pitch deviation. In contrast, shorter contours will contain 
less interval information overall, potentially rendering such information 
more accessible to listeners. Moreover, because Experiment 2 used simplis- 
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tic tonal patterns, these melodies might have contained a more varied set of 
intervals than the melodies used in Experiment 1, with some intervals rela- 
tively infrequent (e.g., the tritone) and other intervals much more common 
(e.g., the major second); such interval variation is common in tonal se- 
quences (Brown, 1988; Brown & Butler, 1981; Browne, 1981; Butler, 1989). 
Together, these distinctions implicate the importance of interval content in 
contour perception, although this is by no means conclusive. 

One topic conspicuously absent from this paper has been any serious 
consideration of the role of rhythm in the perception of melodic contour. In 
the experiments themselves, rhythm was consciously rendered impotent by 
presenting the stimuli in an equitemporal fashion; this lack of rhythmic 
variation makes it unlikely that rhythm significantly influenced contour 
similarity. Rhythm is obviously a crucial component of a melody, however, 
and as such ultimately needs to be addressed in any model of contour per- 
ception. In considering rhythm, one issue involves whether or not any of 
these models can capture rhythmic variation, thereby enabling its inclusion 
in contour analysis. For the music-theoretic approaches, because the vari- 
ous similarity metrics operate on an input representation consisting only of 
ordered pitch information, duration and rhythmic information are lost. In 
fact, this inability to address rhythm has led Marvin (1991) to propose an 
explicit model of rhythm contour perception. This model is again devel- 
oped for the analysis of 20th century music and proceeds along analogous 
lines as the models of pitch contour described in Marvin and Laprade (1987), 
using many of the same analytic tools (e.g., COM-matrix similarity). 

As for the oscillation model, there is similarly no obvious way to incor- 
porate note duration or rhythmic information into these analyses; hence, 
these measures are also blind to rhythm. In contrast, because Fourier analysis 
is unconstrained in the coding of its input, it can analyze the rhythmic 
information of a contour along with its pitch information, provided that 
the rhythm can be encoded into the input representation. One way of in- 
corporating rhythm would be to provide a distinct value for every sounded 
beat or subbeat of the melody, taking the shortest duration as the unit of 
analysis. For example, the first sample contour of Figures 1-4, which was 
coded as 1 2 3 5 4 0, could be represented rhythmically with the series 1 1 
1112354400000 0, with the first tone containing 5 sixteenth notes, 
the second through fourth tones 1 sixteenth note each, and so on. Such an 
input essentially weights pitch information by its rhythm and provides a 
means for incorporating this parameter into an analysis of pitch contour. 

This discussion of rhythm raises a basic issue regarding the relation be- 
tween pitch and temporal information in perceived contour. The idea that, 
given an appropriate input representation, Fourier analysis can incorpo- 
rate rhythm into its contour description assumes that the pitch and tempo- 
ral information of a melody are, on some level, fundamentally integrated; 
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such an assumption arises because, in the world of Fourier transform, peri- 
odicity and rhythm are essentially inseparable. This idea that the impact of 
rhythm on the perception of pitch contour might be captured by analyzing 
a rhythmically weighted pitch representation fits well with a psychological 
characterization of pitch and temporal information as fundamentally inter- 
dependent and interactive (e.g., Boltz, 1989, 1993; Boltz & Jones, 1986; 
Deutsch, 1980; Jones, 1993; Jones & Boltz, 1989; Jones, Boltz, & Kidd, 
1982). 

An alternative psychological description of the relation between pitch 
and temporal information has been to view these two parameters as inde- 
pendent (e.g., Monahan & Carterette, 1985; Palmer & Krumhansl, 1987a, 
1987b; Thompson &c Sinclair, 1993). With regard to the current discus- 
sion, this suggests that another viable method of integrating temporal and/ 
or rhythmic information into contour descriptions is by explicitly analyz- 
ing a contour's rhythm and using this rhythmic analysis as an independent 
factor in the quantification and prediction of contour similarity. This ap- 
proach is inherent in the music-theoretic analysis of rhythm by Marvin 
(1991), described earlier; in fact, Marvin (1995) generalizes the idea of 
contour analysis to a number of diverse musical dimensions, including pitch, 
rhythm, loudness, timbre, and so on. Along these lines, interesting ques- 
tions involve looking for points of congruence, or similar contour struc- 
tures, for different musical segments within the same dimension (e.g., simi- 
lar pitch contours in different sections of a piece or across pieces), or for 
different dimensions within the same musical segment (e.g., similar pitch 
and loudness contours in the same musical phrase). Psychological research 
has only begun to explore contour formation across varying auditory di- 
mensions such as pitch, loudness, and duration (see Schmuckler &c Gilden, 
1993); accordingly, the impact on contour perception of congruity versus 
incongruity of contour information is not well understood. Clearly, though, 
this is an intriguing avenue for future work, both in its own right and as it 
relates to musical contour similarity. 

The preceding discussion of rhythm, and how it might be integrated into 
a model of contour perception, underscores the general finding that con- 
tour similarity was a joint function of multiple, independent variables (am- 
plitude spectra and pitch deviation similarity, and sometimes phase spectra 
information). Two very general issues arise here: First, what other variables 
might be important in predicting perceived contour similarity, and second, 
will these same variables always be predictive of perceived contour similarity? 

In considering other variables, the impact of rhythm, either character- 
ized within a pitch contour representation or as a separate parameter, has 
already been much discussed. A different set of variables that might be 
important involves internalized representations of musical information. One 
obvious such candidate is tonal hierarchy similarity (see Krumhansl, 1990, 
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for a description of tonal hierarchies), or the degree to which two contours 
invoke similar percepts of tonality. Although not formally presented in this 
article, a series of analyses examined the impact of tonality on contour 
similarity6 and failed to uncover any significant association between tonal 
similarity and derived contour similarity. It should be remembered, though, 
that these experiments were designed to minimize the impact of tonality by 
transposing melodies to randomly chosen keys on every presentation, not 
to mention that the contours of Experiment 1 were assumed, by definition, 
to be nontonal. As such, the role of tonality in contour similarity is an open 
question. 

Along with tonal hierarchy information, metrical hierarchy information 
(see Palmer &c Krumhansl, 1990, for a description of metrical hierarchies) 
might play in role in contour similarity, with two contours that instantiate 
similar metrical hierarchies heard as similar. Previous work (Schmuckler, 
1990), for example, has shown that metrical hierarchy information can be 
used to characterize performances of complex melodic and combined me- 
lodic-harmonic musical passages. Given the nature of the current stimuli, 
the possibility of metrical hierarchy similarity is a moot point in the present 
studies; thus, as with tonality, the impact of this variable remains to be 
tested. 

The finding that contour similarity is predictable from multiple factors 
demonstrates that music can be simultaneously characterized via multiple 
psychological and/or music-theoretic descriptions, as opposed to a single 
analytic description. In this regard, Fourier analysis, and to a lesser extent 
the oscillation model, provides an alternative to the more typical descrip- 
tions of musical structure involving hierarchical melodic (e.g., Deutsch & 
Feroe, 1981; Jones, 1981; Jones, Maser, & Kidd, 1978; Narmour, 1990, 
1992; Schenker, 1979), tonal-harmonic (e.g., Krumhansl, 1979, 1990; 
Lerdahl &c Jackendoff, 1983; Schenker, 1954), or rhythmic content (e.g., 
Essens, 1986; Essens &c Povel, 1985; Jones, 1976; Lerdahl & Jackendoff, 
1983; Palmer & Krumhansl, 1990; Povel, 1981, 1984). In contrast, Fou- 
rier analysis of contours is more in keeping with fractal analyses of audi- 
tory (e.g., Schmuckler & Gilden, 1993; Voss & Clarke, 1978) and visual 
(e.g., Cutting &c Garvin, 1987; Gilden, Schmuckler, & Clayton, 1993; 
Gilden, Thornton, & Mallon, 1995; Knill, Field, & Kersten, 1990) stimuli. 
Such analyses have provided an alternative, and often complementary, de- 
scription of the information contained in auditory and visual sources. 

6. For the atonal contours of Experiment 1, the 12 tones were weighted using a proce- 
dure similar to that described by Krumhansl et al. (1987), and the tonality of these contours 
and those of Experiment 2 were quantified by using Krumhansl and Schmuckler 's (1986) 
key-finding algorithm (see Krumhansl, 1990). Tonal similarity was assessed by then com- 
paring the output of the key-finding algorithm for all contours. 
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The second general issue involves whether or not the same variables will 
be predictive of contour similarity across a range of stimuli and psycho- 
logical tasks. Although in many ways this issue simply awaits future re- 
search, the results of the impact of phase information do demonstrate that 
the variables underlying contour similarity can vary with the nature of the 
stimuli. As an aside, it was interesting that amplitude information consis- 
tently predicted similarity ratings in that this result diverges from research 
on the identification of visual scenes (e.g., Banks & Ginsberg, 1985; Kleiner, 
1987; Kleiner & Banks, 1987) in which phase information is preeminent. 
This finding does, however, coincide with work on the perception of fractal 
contours (e.g. Gilden et al., 1993, 1995; Schmuckler & Gilden, 1993) that 
has demonstrated that amplitude spectra information is critical in identifi- 
cation and discrimination. This issue aside, these results suggest that Fou- 
rier analysis and oscillation measures, along with any other indices, may 
vary in predicting contour similarity. 

In sum, this paper is just a first step in developing a model of contour 
description and perception, and suggests a number of possible directions 
for future work. The ultimate goal of such explorations is to provide as 
comprehensive and as global a theory of musical contour as possible, and 
hopefully, a theory of the perception of melodies more generally. Such theo- 
ries will aid not only in the analysis of musical organization and structure, 
but will also provide insight into the fundamental psychological processes 
involved in the perception and cognition of complex auditory and musical 
information.7 

7. This research was supported by a grant from the Natural Sciences and Engineering 
Research Council of Canada to the author. Portions of this work were presented at the 35th 
meetings of the Psychonomic Society, 1994, St. Louis, MO. 
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