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Abstract

A general framework for defining distance functions for monophonic music sequences is presented. The distance func-
tions given by the framework have a similar structure, based on local transformations, as the well-known edit distance
(Levenshtein distance) and can be evaluated using dynamic programming. The costs of the local transformations are
allowed to be context-sensitive, a natural property when dealing with music. In order to understand transposition invari-
ance in music comparison, the effect of interval encoding on some distance functions is analyzed. Then transposition
invariant versions of the edit distance and the Hamming distance are constructed directly, without an explicit conversion
of the sequences into interval encoding. A transposition invariant generalization of the Longest Common Subsequence
measure is introduced and an efficient evaluation algorithm is developed. Finally, the necessary modifications of the
distance functions for music information retrieval are sketched.

1 Introduction

The translation-invariant representation of integer se-
quences is useful in some application domains of string
matching algorithms. In music retrieval, for example, it is
often natural to require that the retrieval results are invari-
ant with respect to pitch level transposition. In geometric
shape detection the contour of a geometric object should
be represented as a sequence that is invariant under rigid
motions of the object.

Such an invariance can be achieved by convert-
ing the original ‘absolute’ sequence into relatively en-
coded form where each element of the sequence is en-
coded relative to its predecessor. The differences be-
tween successive elements are perhaps the simplest form
of such an encoding. As an example, the absolute
sequence 3, 7, 5, 5, 8, 7, 7, 5, 3 is relatively encoded as
4,−2, 0, 3,−1, 0,−2,−2.

In general string matching, the edit distance with its
many variations is the most common measure to expose
the (dis)similarity between two strings. The edit distance
can be calculated by using dynamic programming; see
e.g. (Crochemore and Rytter, 1994; Gusfield, 1997). The
concept has also been adapted to music retrieval with rel-
ative encoding; see e.g. (Mongeau and Sankoff, 1990;
Crawford et al., 1998).

The paper presents, in Section 3, a general frame-
work for defining distance functions for monophonic mu-
sic comparison and retrieval. In our framework one can
use context-sensitive costs for the local transformations,
that is a useful novel property when dealing with mu-
sic. Analyzing the context of music usually requires a
preprocessing phase which executes intelligent context

analyzing programs. The result of such a preprocessing
phase can be stored into some internal representation; see
e.g. (Lemström and Laine, 1998).

In Section 4, we study the effect of the relative encod-
ing on the values of some well-known and novel sequence
distance functions. It turns out that typically there is no
strong relation between distances measured using either
absolute or relatively encoded sequences.

In Section 5, we find out, that an explicit relative en-
coding is not necessary. Transposition invariant distance
functions can be constructed directly, by adopting trans-
position invariant cost functions for the local transforma-
tions used in the distance function. The cost functions
now become context sensitive.

Section 6 introduces a new distance function for com-
paring music. It is a generalization of the classical longest
common subsequence measure for comparing strings of
symbols. One could call it as a ‘Longest Common Hid-
den Melody’ measure. An efficient evaluation algorithm
is developed for this distance measure, improving the
O(m2n2) running time of the straightforward solution
into O(mn).

Finally in Section 7, we comment on using our dis-
tance functions in music information retrieval, that is, in
finding the (approximate) occurrences of a short piece of
music in a large music database.

2 Encodings of Music

We use a simplified representation of monophonic music
that gives only the pitch levels of the notes, but not their
durations. The pitch levels in semitones are given as inte-



ger numbers. Hence a piece of music containing n notes
is represented as a sequence of n integers.

More formally, the integers that can be used in the
sequences, form our alphabet Σ. In practice, we could
for example have Σ = {0, 1, . . . , 127} (as in MIDI) or
Σ = {0, 1, . . . , 11} (which reduces all notes into one oc-
tave). Any sequence A = (a1, a2, . . . , am) where each
ai is in Σ represents a piece of monophonic music. For
simplicity, we will write such sequences in the sequel as
a1a2 · · ·am instead of (a1, a2, . . . , am). The set of all se-
quences over Σ is denoted Σ∗. Hence a1a2 · · · am is a
member of Σ∗. The length of A is denoted |A|.

Two equally long sequences A = a1 · · ·am and A′ =
a′
1 · · · a′

m are transpositions of each other if there is an
integer c such that a′

1 = a1 + c, a′
2 = a2 + c, . . ., and

a′
m = am + c. Then we write A′ = A + c.

The interval representation of a sequence A =
a1 · · · am in Σ∗ is a sequence

A = (a2 − a1, a3 − a2, . . . , am − am−1) = a1 · · · am−1.

Each symbol ai in A is a difference between two integers
in Σ. Hence A is a sequence in Σ

∗
where Σ = {a −

b | a, b ∈ Σ} is the interval alphabet.
A reduced interval alphabet is often sufficient and

useful in music information retrieval. For example, the
so-called octave equivalence is achieved by using inter-
val alphabet {a mod 12 | a ∈ Σ}. If the intervals are
known to be imprecise, like in query-by-humming sys-
tems, a rough classification of the intervals into possibly
overlapping classes such as small, medium, and large up-
wards and downwards intervals might be sufficient (Ghias
et al., 1995; Lemström and Laine, 1998).

The crucial property of the interval representation is
that it is transposition invariant. This means, that if A
and A′ are transpositions of each other, then, obviously,
they have the same interval representation, i.e.,

A = A′.

In music comparison and retrieval, it is often natural
to have transposition invariant measures for the distance
between sequences. Formally, a sequence distance func-
tion D is transposition invariant if

D(A, B) = D(A + a, B + b)

for any sequences A, B in Σ∗ and any possible a, b in Σ.
Naturally, if the note durations are to be consid-

ered as well, an invariance under different tempi can
be obtained by using a sequence Â, such that Â =
(a2

a1
, a3

a2
, . . . , am

am−1
), that consists of the ratios of the orig-

inal durations.

3 A Framework for Sequence Com-
parison

3.1 The General Scheme

We will introduce several different distance functions to
measure the dissimilarity between sequences. All are
variations of the well-known edit distance (also known
as Levenshtein distance or evolutionary distance) widely
used in approximate string matching. The underlying
general framework for sequence distance functions is as
follows; c.f. (Ukkonen, 1985).

To define a distance between sequences in Σ∗, one
should first fix the set of local transformations T ⊆
Σ∗ × Σ∗ and a cost function w that gives for each trans-
formation t a cost w(t) which is a non-negative integer
(or a real). Note that each t in T is a pair of sequences
t = (α, β). It is convenient to extend w to all pairs (α, β)
in Σ∗ × Σ∗: if (α, β) �∈ T , then we define w(α, β) = ∞.

We usually write such a t = (α, β) as (α → β) to
emphasize another view on t: it can be seen as a rewriting
rule that allows one to replace α by β inside a sequence
that contains α.

The actual definition of the distance is based on the
concept of trace. A trace gives a correspondence between
two sequences. Formally, let A = a1 · · · am and B =
b1 · · · bn be sequences in Σ∗. A trace between A and B
is formed by splitting A and B into equally many, say p,
parts some of which may be empty sequences. Hence a
trace can be written as:

τ = (α1, α2, . . . , αp; β1, β2, . . . , βp),

such that A = α1α2 · · ·αp, and B = β1β2 · · ·βp, and
each αi, βi is a possibly empty sequence over Σ. The
trace suggests a transformation from A to B: part α1 is
transformed to β1, α2 to β2, . . ., and αp to βp. Stated
otherwise, sequence B is obtained from A by local trans-
formation steps α1 → β1, α2 → β2, . . . , αp → βp.

Now the cost of the trace τ is w(τ) = w(α1 → β1) +
· · · + w(αp → βp). Note that if some αi → βi is not in
T , then w(τ) becomes ∞.

Finally, the distance between A and B, denoted
DT,w(A, B), is defined as the minimum cost over all pos-
sible traces:

DT,w(A, B) = min{w(τ) | τ is a trace between A and B}.

3.2 Functions DL and DH

As an example, this scheme gives the familiar unit-cost
edit distance (Levenshtein distance) if the local transfor-
mations are of the forms a → b, a → λ, and λ → a
where a and b are any members of Σ, and λ denotes the
empty sequence.1 The costs are given as w(a → a) = 0
for all a, and w(a → b) = 1 for all a �= b, and

1The local rules a → b, a → λ, and λ → a are often called ‘re-
placement’, ‘deletion’, and ‘insertion’.



w(a → λ) = w(λ → a) = 1 for all a. We denote
this edit distance function as DL.

The Hamming distance is obtained exactly as DL but
the allowed local transformations are only a → b where a
and b are any members of Σ, with cost w(a → a) = 0 and
w(a → b) = 1, a �= b. We denote the Hamming distance
as DH .

3.3 Distance Evaluation and Transforma-
tion Graph

Distances DT,w(A, B) are useful in practice, because
they can efficiently be evaluated using dynamic program-
ming. Such a procedure tabulates all distances d ij =
DT,w(a1 · · · ai, b1 · · · bj) between the prefixes of A and
B. The distance table (dij), where 0 ≤ i ≤ m and
0 ≤ j ≤ n, can be evaluated by proceeding row-by-row
or column-by-column and using the recurrence


d00 = 0
dij = min{dr−1,s−1 + w(ar · · · ai →

bs · · · bj) |(ar · · · ai → bs · · · bj) ∈ T }.
(1)

Finally, dmn equals the distance DT,w(A, B).
It is not difficult to see that the evaluation of

DT,w(A, B) in this way may in the worst case take time
at least proportional to m2n2 which is relatively slow2.
In practice, fortunately, T is often very sparse which can
be utilized to speed-up the dynamic programming. For
example, the edit distance DL(A, B) can be evaluated in
time proportional to mn (in time O(mn), for short) from
the well-known recurrence

d00 = 0

dij = min




di−1,j + 1
di,j−1 + 1
di−1,j−1 + (if ai = bj then 0 else 1).

An alternative view which sometimes is very useful,
is given by interpreting (dij) as a weighted graph as fol-
lows. The dij ’s form the nodes of the graph. Moreover,
there is a weighted arc from any node dr−1,s−1 to node
dij if (ar · · · ai → bs · · · bj) belongs to T . This arc
has weight w(ar · · · ai → bs · · · bj). Then DT,w(A, B)
equals the smallest possible total weight of a path in this
graph from d00 to dmn; formal proof is a simple in-
duction. We call such a path a minimizing path. The
weighted graph is called the transformation graph and de-
noted GT,w(A, B).

3.4 Context-Sensitive Cost Functions

In our distance scheme as described above the cost
w(α → β) of each local transformation is independent of
the context in which α and β occur in A and B. Transfor-
mation α → β has always the same cost. When compar-
ing musical sequences, however, a context-sensitive cost

2Depending on the representation for T and w, the run time can be
much slower.

function seems sometimes useful. The cost of α → β
should depend on the (tonal, harmonic, rhythmic) context
around α and β; see e.g. (Rolland and Ganascia, 1996;
Coyle and Shmulevich, 1998).

This can be formalized by including the context in the
definition of the cost function w. There are several possi-
bilities as regards limiting the size of the context that can
influence the cost. We can imagine that sometimes the to-
tal context of α and β, that is, the whole sequences A and
B are relevant.

We suggest a parameterized limitation of the context.
Assume that A can be written as A = µϕαϕ′µ′ where
|ϕ| = u and |ϕ′| = v. Then α has (u, v) context (ϕ, ϕ′).
Now we say that w is a cost function with (u, v) context
if w is an integer valued function defined on T × Σu ×
Σv × Σu × Σv; here Σx denotes the set of sequences
of length x over Σ. When using such a function w for
evaluating the cost of a trace, the (u, v) context of each
local rule is taken into account. If α → β occurs in a
trace such that the (u, v) context of α and β is (ϕ, ϕ′) and
(�, �′), respectively, then w(α → β, ϕ, ϕ′, �, �′) is the
cost associated with this particular occurrence of α → β.

The (u, v) context of each candidate transformation
α → β can easily be retrieved during dynamic program-
ming when evaluating each dij . Hence using a cost func-
tion with (u, v) context is possible in the dynamic pro-
gramming algorithm. The run time obviously gets slower
but the overall architecture of the evaluation process re-
mains the same.

It will turn out later in this paper that our transposition
invariant sequence distance functions use cost functions
with (1, 0) context.

4 Absolute vs. Transposition Invari-
ant Distance

The sequence distance functions given by our framework,
such as DL and DH , can be applied as such both for com-
paring sequences in Σ∗ (‘absolute’ sequences) and com-
paring their interval encoded versions in Σ

∗
(‘relative’ se-

quences). The functions induce two distances in this way.
We say for sequences A, B in Σ∗, that DL(A, B) is the
absolute edit distance and DL(A, B) is the transposition
invariant edit distance between A and B. When com-
paring music, the transposition invariant distance seems
more natural except when we know a priori that A and B
belong to the same key.

In this section we present some basic results, mostly
on the relation between the absolute and the transposition
invariant versions of distances DL and DH . However, let
us start by introducing a modulation function. Let A =
a1 · · · am. For any l, 1 ≤ l ≤ m, and any integer valued
c, sequence

Mc
l (A) = (a1, . . . , al−1, al + c, . . . , am + c)

is called a modulation of A by c at l.



Note that transposition is a special case: If B is a
transposition of A, B = Mc

1(A).
The following theorem illustrates a strength of the in-

terval encoding. Although one single modulation in the
original sequences can change any number of notes, the
(edit of Hamming) distance of the interval encoded ver-
sions stays small.

Theorem 1 If B is a modulation of A then DL(A, B) =
DH(A, B) = 1.

Proof Let B = Mc
l (A). Hence bi = ai, for 1 ≤ i < l,

and bi = ai + c for l ≤ i ≤ |A|. Then obviously, bi = ai

for 1 ≤ i < l − 1, bl−1 = al−1 + c, and bi = ai for
l ≤ i < |A|.

Sequences A and B differ in one position, hence the
theorem follows.

We continue with a technical lemma that points out
the local configurations in the transformation graphs in
which the transposition invariant distance can locally be
larger than the corresponding absolute distance.

Distances DH and DL have similar properties, hence
we analyze them together. Let DE denote DH or DL. We
need to compare the paths in GE(A, B) and in GE(A, B).
Denote the nodes of GE(A, B) as (dij), 0 ≤ i ≤ m, 0 ≤
j ≤ n. Note that as A and B are one element shorter
than A and B, the first row and column are missing in
GE(A, B) as compared to GE(A, B). The subgraph of
GE(A, B) with nodes (dij), 1 ≤ i ≤ m, 1 ≤ j ≤
n, has the same topological structure as DE(A, B) but
some arc weights may differ. Let us denote this sub-
graph as G′

E(A, B). Consider some directed path p in
GE(A, B) from d00 to dmn. Let p′ be the restriction of
p to G′

E(A, B). Hence p′ is a path from drs to dmn for
some r and s such that r = 1 or s = 1. Let e and f be
two consecutive arcs of p′. We say that f starts a 0-block
of p′, if e has weight 1 and f has weight 0.

Lemma 2 Let g be an arc of p′ such that g has weight 0
while the corresponding arc g in GE(A, B) has weight 1.
Then g starts a 0-block in p′.

Proof. If g does not start a 0-block then the arc g ′ just
before g on p′ must have weight 0, too. The only lo-
cal transformations with weight 0 that are available for
distance DE are the identity transformations of the form
a → a. But this means that for some i and j, g is an
arc from di−1,j−1 to dij and g′ is an arc from di−2,j−2

to di−1,j−1, and ai = bj and ai−1 = bj−1. Hence
ai − ai−1 = bj − bj−1 which means that g has weight
0 in GE(A, B). Hence, if g has weight 1, g must start a
0-block in p′.

Theorem 3 DE(A, B) ≤ 2 · DE(A, B).

Proof. Let p be the minimizing path in GE(A, B) from
d00 to dmn, and let p′ be its restriction to G′

E(A, B). Path
p′ can contain at most DE(A, B) 0-blocks because there
must be before each block an arc with weight 1. Then by
Lemma 2, path p′ that corresponds to p′ in GE(A, B) can
have at most DE(A, B) 1-arcs more than p′.

Moreover, let p′′ be the path in GE(A, B) from d11

to the start node of p′. A simple case analysis shows that
the total weight of p′′ is at most the weight of the sub-
path of p that leads from d00 to the start node of p′. In
summary, this means that the weight W of path p ′′ p′ in
GE(A, B) from d11 to dmn is ≤ 2 · DE(A, B). The the-
orem follows as p′′ p′ is not necessarily the minimizing
path in GE(A, B) and hence DE(A, B) ≤ W .

The following theorem gives bounds for the difference
D(A, B) − D(A, B) when D is DL or DH . We also
consider a distance DH′ which is the Hamming distance
augmented with a novel local transformation ab → cd
(called compensation), where a, b, c, and d are members
of Σ such that a+b = c+d. Moreover, w(ab → cd) = 1.

To understand the intuition behind the compensation
rule, consider the effect of a single replacement. Let A
and B differ only by one replacement (also called a mis-
match) which we denote B = Vl(A) where l refers to
the mismatching position. Then DH(A, B) = 1 while
DH(A, B) = 2 because a mismatch changes two inter-
vals. By adding the compensation rule this antisymmetry
is at least partially relieved, because DH′(A, B) = 1.

Theorem 4 a) Let |A| = |B| = n.
Then −�n−1

2 � ≤ DH(A, B) − DH(A, B) ≤ n.

b) Let |A| = |B| = n. Then
−�n−1

3 � ≤ DH(A, B) − DH′(A, B) ≤ n.

c) Let m = |A| ≤ |B| = n. Then
1 − m ≤ DL(A, B) − DL(A, B) ≤ n.

Proof. To prove the upper bounds in all the cases, we
note that, clearly, the bound cannot be larger than n be-
cause the distances between A and B as well as be-
tween A and B always belong to the range 0, . . . , n.
To show that the bound is tight, let A = aa · · · a and
B = bb · · · b for some a �= b and |A| = |B| = n.
Then DH(A, B) = DL(A, B) = n while DH(A, B) =
DH′(A, B) = DL(A, B) = 0. Hence the bound cannot
be smaller than n.

The lower bound follows from the fact that the num-
ber of 0-blocks of Lemma 2 is at most � n−1

2 � in the case
of Hamming distance DH ; at most �n−1

3 � in the case of
modified Hamming distance DH′ ; and at most m − 1 in
the case of Levenshtein distance DL.

All the bounds are again tight. For DH consider se-
quences A = (0, 1, 0, 1, . . .) and B = (0, 2, 0, 2, . . .);
for DH′ sequences A = (0, 0, 1, 0, 0, 1, . . . , 0, 0, 1) and
B = (0, 0, 2, 0, 0, 2, . . . , 0, 0, 2); and for DL sequences
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Figure 1: DH(A, B) vs. DH′(A, B) in music comparison. The sequences below A and B correspond to A and B,
respectively.

A = (0, 0, . . . , 0) and B = (1, 0, 1, 0, . . . , 1, 0) such that
|B| = 2 · |A|.

Example 1 In Fig. 1, the absolutely encoded A and B
are comprised of MIDI values. The two sequences are al-
most identical: there is only one mismatch and two mod-
ulations (B = M−2

9 (M2
5(V2(A)))). We have enclosed

in brackets the locations where an editing operation is
needed. In DH′ (A, B), the mismatch is detected by a
compensation (a2 + a3 = b2 + b3 = 4) and the modu-
lations by a replacement, thus DH′(A, B) = 3. However,
D(A, B) = 5 because the mismatch is detected by a re-
placement, but the first modulation has shifted all the val-
ues until the other ‘normalizing’ modulation. Note, that
after being lost ‘B catches’ immediately the correct tune
at the second modulation (a9 = b9), while ‘B realigns’
itself one step later.

5 Implicit Interval Encoding

We noticed in Section 4 that each distance function for ab-
solute sequences also gives a transposition invariant dis-
tance. This is achieved simply by at first converting the
sequences into interval encoding. We now complement
this by observing that an explicit conversion is not neces-
sary. The cost function for local transformations can be
defined such that the resulting distance becomes transpo-
sition invariant.

Since the conversion is not needed anymore, some
shortcomings of the relative encoding are avoided. When
the intervals are calculated ‘on-the-fly’ from absolute se-
quences, a deletion or an insertion does not transpose the
rest of a sequence as in the case when working with rela-
tive encoding.

We restrict the consideration to distances DH and DL

only. The transposition invariant unit-cost edit distance
DL(A, B) uses the local transformations a → b, a → λ,
and λ → a as the distance DL(A, B). The costs are given
as w(a → λ) = w(λ → a) = 1. The cost for a → b will

now be context-sensitive. Let a′ be the symbol of A just
before a and b′ the symbol of B just before b′, that is,
the (1, 0) contexts of a and b are (a′, λ) and (b′, λ). Then
define

w(a → b, a′, λ, b′, λ) =




0, if a − a′ = b − b′ or
a′ or b′ is missing,

1, if a − a′ �= b − b′.

The recurrence for evaluating the prefix distance table
(dij) for DL(A, B) becomes

d00 = 0

dij = min




di−1,j + 1
di,j−1 + 1
di−1,j−1 + (if ai − ai−1 = bj − bj−1

then 0 else 1).

Obviously, this table can be evaluated in time O(mn).
Similarly, the transposition invariant Hamming dis-

tance DH(A, B) uses local transformations a → b whose
cost is defined exactly as for DL(A, B) above.

By induction over the corresponding prefix distance
tables (dij) one easily proves the following theorem
which implies that DL and DH really are transposition
invariant distance functions according to the definition
given in Section 2.

Theorem 5

DL(A, B) = DL(A, B)
DH(A, B) = DH(A, B).

This also includes that the prefix distance table (dij)
for DL is of the same general form as the table for the
standard unit-cost edit distance. Hence the very fast bit-
parallel algorithms designed for the edit distance can be
used for evaluating the transposition invariant unit-cost
edit distance as well.

Finally we remark that using both the absolute and
relative costs of local transformations simultaneously is
possible and seems to give useful distance functions. For
example, in the standard unit-cost edit distance we could



give cost 0 to a → b if a = b, as usual, but also if a → b
occurs in a context in which the interval for a equals the
interval for b. The recurrence becomes

d00 = 0

dij = min




di−1,j + 1
di,j−1 + 1
di−1,j−1 + (if ai = bj or ai − ai−1 =

bj − bj−1 then 0 else 1).

We denote the resulting distance function as DN . As
DN has the same local transformations as DL and DL,
with possibly smaller costs, it follows that DN (A, B) ≤
DL(A, B) and DN (A, B) ≤ DL(A, B) for all A and B.
On the other hand, DN is not transposition invariant.

6 Transposition Invariant LCS

The longest common subsequence LCS(A, B) of two se-
quences A and B can be used for measuring the similarity
of A and B: the longer is LCS(A, B), the more similar
are the sequences A and B.

To define LCS(A, B), we say that sequence C is a
subsequence of a sequence A if C can be obtained from
A by deleting zero or more symbols. Then LCS(A, B)
is the longest sequence that is a subsequence of both A
and B. For music comparison and retrieval we need a
transposition invariant generalization of this concept.

We say that a sequence C in Σ∗ is the longest common
transposition invariant subsequence of two sequences A
and B in Σ∗ if C is the longest possible sequence such
that C = A′ and C = B′ and A′ is a subsequence of
A and B′ is a subsequence of B. Then we write C =
LCTS(A, B). Note that LCTS(A, B) is unique only up
to arbitrary transposition: if C = LCTS(A, B) then any
C + c is LCTS(A, B).

The sequence C = LCTS(A, B) can be seen in mu-
sical terms as the longest common melody that is hidden
in both A and B. To obtain C, we must delete the smallest
number of elements from A and B such that the remain-
ing two sequences are identical after some transposition,
that is, their interval encoded representations are identi-
cal. This seems like a natural concept in the context of
music comparison. We can think, for example, that the
deleted elements are musical decorations used differently
in the two variations A and B of the same melody C 3.

Let DLCS(A, B) denote the total number of deletions
needed to obtain LCS(A, B) from A and B. Then it is
well-known that

|LCS(A, B)| =
|A| + |B| − DLCS(A, B)

2
,

where DLCS(A, B) is a distance function that is given by
our general scheme by using local transformations a →

3To really achieve this goal needs further elaboration of the LCTS
model that goes beyond the present paper.

λ, λ → a, and a → a with costs w(a → λ) = w(λ →
a) = 1, and w(a → a) = 0.

Similarly, it turns out that

|LCTS(A, B)| =
|A| + |B| − DLCTS(A, B)

2
,

where DLCTS(A, B) is a distance function again given
by our scheme. Now any rule α → β where α, β are
non-empty sequences in Σ∗ is a local transformation. The
associated cost function wLCTS has (1, 0) context. Let
a be the last symbol of α and b the last symbol of β and
let the (1, 0) context of α and β be (a′, λ) and (b′, λ),
respectively.

Then we define

wLCTS(α → β, a′, λ, b′, λ) =
{
k−1 + l−1, if a−a′ = b−b′

k + l, if a − a′ �= b − b′,

where k = |α| and l = |β|.
The recurrence for tabulating (dij) to get

DLCTS(A, B) is

d00 = 0
dij = min

1≤k≤i;1≤l≤j
{di−k,j−l +

wLCTS(α → β, ai−k, λ, bj−l, λ)},

where α = ai−k+1 · · · ai and β = bj−l+1 · · · bj . To eval-
uate dij directly from the recurrence needs O(ij) opera-
tions, hence the total time requirement becomes as high
as O(m2n2). We show next how to reduce the compu-
tation of DLCTS(A, B) to a repeated computation of the
distance DLCS.

The key observation is, that LCTS(A, B) must be
equal to a LCS(A, B+c) for some suitably selected con-
stant c.

This gives the following solution: For all c in Σ, com-
pute DLCS(A, B + c) with the standard O(mn) algo-
rithm. Then |DLCTS(A, B)| = maxc{|DLCS(A, B +
c)|}. This method takes time proportional to |Σ| · mn
which is O(mn) because |Σ| is independent of m and n.
Hence we have:

Theorem 6 DLTCS(A, B) and hence |LCTS(A, B)|
can be computed in time O(mn).

In Fig. 2 we give an example of calculating an LCTS
between two musical sequences (the sequences are ob-
tained from (Cambouropoulos et al., 1999); the lower se-
quence is transposed from the original key of C major to
D major).

7 Music Retrieval

In the content-based information retrieval problem for
monophonic music we are given a long database S =
s1s2 · · · sn of monophonic music and a relatively short



Figure 2: An example of finding LCTS(A, B). The ap-
plied (a → a + c) rules are illustrated by lines. In this
case |LCTS(A, B)| = 5, and c = 2.

‘key’ P = p1 · · · pm. Formally, both S and P are se-
quences in Σ∗. The problem is to find the locations in
S where P occurs as a subsequence. One might be in-
terested in finding for example exact occurrences, trans-
posed occurrences or maybe somehow approximate oc-
currences.

The framework of Section 3 is for comparing entire
sequences. It is, however, easy to modify it using a well-
known trick, originally presented by Sellers (1980), for
our retrieval problem. Now P should basically be com-
pared against all subsequences of S to find the best match.
The dynamic programming algorithm almost as such will
do this, only a slight change is needed in the initialization
of the table (dij).

More precisely, let DT,w be a distance function given
by the scheme of Section 3. Evaluate table (d ij), 0 ≤ i ≤
m, 0 ≤ j ≤ n, as in the recurrence (1) but use initializa-
tion

d0j = 0

for 0 ≤ j ≤ n. Then the music retrieval results can
be read from the last row dmj , 0 ≤ j ≤ n, of the ta-
ble (dij). Value dmj gives the smallest possible value of
DT,w(P, P ′) where P ′ is any subsequence (substring) of
S that ends at location j. The sequence P ′ can be uncov-
ered using (dij), too.

The length n of the database S can be very large.
Therefore it is of crucial importance to find fast imple-
mentations for the evaluation of (dij). The fastest al-
gorithms currently known are based on so-called bit-
parallelism (Baeza-Yates and Gonnet, 1992). Bit-
parallelism can give a speed-up up to by factor W where
W is the length (in bits) of the computer word used. Un-
fortunately, such algorithms have quite limited applica-
bility: strong restrictions on the set T of local transforma-
tions and on the cost function w, seem necessary.

The unit-cost edit distance DL is an example of a dis-
tance function for which bit-parallel implementation is
possible. The fastest such algorithms currently known are
due to Myers (1998), and Navarro and Raffinot (1998). It
turns out that Myers’ algorithm can be modified (at least)
to the distance function DN and DL defined in Section 5.
We have implemented these in our prototype MIR system

under development (Lemström and Perttu, 2000). The al-
gorithms can reach a scanning speed exceeding 107 notes
per second on current Pentium II computers.

8 Conclusion

We have considered the problem of measuring the dis-
tance between two sequences A and B in the context of
monophonic music comparison and retrieval. The encod-
ing that we have used is a simplified representation of
monophonic music; only the pitch levels are present in
the encoding.

We have presented a general framework for sequence
comparison. The framework deals with variations of the
well-known edit distance measure. Moreover, in our
framework one can use context-sensitive cost functions,
which we believe that is a very important property in
this application area. We also introduced the concept of
a transposition invariant distance function and presented
some examples of such functions.

Currently we are working on various bit-parallel algo-
rithms for music information retrieval, based on the dis-
tance functions presented in this paper.
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