
11Huron

David Huron
School of Music
1866 College Road
Ohio State University
Columbus, OH 43210 USA
huron.1@osu.edu

Music Information
Processing Using the
Humdrum Toolkit:
Concepts, Examples,
and Lessons

Computer Music Journal, 26:2, pp. 11–26, Summer 2002
� 2002 Massachusetts Institute of Technology.

Humdrum is a general-purpose software system in-
tended to assist users in a variety of music-related
applications. This article provides an introductory
tour of Humdrum emphasizing three goals: to iden-
tify the basic elements, operations, and organiza-
tion of Humdrum; to illustrate the range of
applications through a series of tutorial examples;
and to identify a number of lessons from Humdrum
that might benefit future music software designers.

Humdrum’s capabilities are quite broad, so it is
difficult to describe concisely what it can do. Since
its inception, the principal users of Humdrum have
been systematic musicologists, theorists, ethnomu-
sicologists, music librarians, historians, music cog-
nition researchers, and composers. Five features
have accounted for this broad interest: the ability
of users to concoct or tailor unique representations
that pertain to the user’s specific interests; a flexi-
ble set of analytic and processing tools that can be
applied to both established and user-defined repre-
sentations; a coherent and extensible system for
representing reference-related metadata; ease of
connectivity to other existing software; and avail-
ability of a large volume of high-quality encoded
materials.

In Humdrum, new musical representations are
easily created. The opportunity to craft representa-
tions for specific tasks has led to the development
of innumerable representations. For example, Hum-
drum users have concocted representations for Bu-
gandan xylophone music, Cajun button accordion
tablatures, square notation, Persian Ney music, Be-
nesh dance notation, running acoustic spectra, and
track index markers for compact discs. For many
projects, it is common to generate intermediate or
‘‘throw-away’’ representations that are used only
for a single task. For example, in perceptual re-

search, collected data (such as listener responses)
are commonly encoded in the same document that
contains the stimulus materials.

In addition to specific representation schemes for
user ‘‘data,’’ Humdrum allows users to define their
own types of reference-related information. Con-
ventional reference information includes an artist’s
name, title, date of performance, copyright status,
etc. However, Humdrum allows users both to ex-
tend and omit such metadata in ways that main-
tain compatibility without compelling users to
encode task-irrelevant materials. For example, a
ballet scholar might define reference information
identifying the transcriber of a Laban dance nota-
tion while remaining compatible with conven-
tional cataloguing systems. At the same time, users
can still process materials with incomplete or ab-
sent reference information.

Although Humdrum does not provide its own
sound generation or graphic notation capabilities, a
number of translators exist that connect Humdrum
to existing applications. These include translations
to MIDI, Csound (Vercoe 1986), the Finale Enigma
format, the Score notation system (Smith 1972;
Kornstädt 1996), and the Mup music text formatter
(available from www.arkkra.com). In addition, ma-
terials can be translated to the Humdrum format
from MIDI, the Finale Enigma format, MuseData
(Hewlett 1997), DARMS (Erickson 1976; Hall
1997), and the RISM Plaine and Easie representa-
tion (Howard 1997).

All Humdrum file formats are ASCII text. This
facilitates viewing and editing data, increases cross-
platform portability, and eases the writing of task-
specific software. The plain text format also
facilitates reformatting data for special-purpose uses
such as graphics programs or statistical packages.

Musical materials encoded in the Humdrum for-
mat span five centuries and six continents. En-
coded materials include complete musical works as

12 Computer Music Journal

well as collections of themes and incipits. As of
2001, over 40,000 musical works had been encoded
in various levels of detail. Some encodings are sim-
ple monophonic melodies; others include full or-
chestral scores including such details as
stem-direction and beaming. In addition to the
MIDI format, the Humdrum ‘‘kern’’ representation
is one of the principal distribution formats for the
high-quality electronic editions produced by the
Center for Computer Assisted Research in the Hu-
manities (www.ccarh.org). An extensive collection
of non-Western musics has been encoded; an in-
complete alphabetic sample includes Aleutian, Bra-
zilian, Chinese, Dutch, Ethiopian, Fijian, German,
Haitian, Indonesian, Japanese, Khmer, Lakota,
Mandan, Namibian, Ojibway, Peruvian, Quebecois,
Russian, Scottish, Thai, Usarafus, Venda, Xhosa,
Yoruba, and Zulu musics. (Huron 1992). Regarding
Humdrum’s analytic capability, a selection of tools
will be discussed next.

Humdrum Syntax

Humdrum data are organized in two-dimensional
tables like a spreadsheet. Columns of data can be
defined to represent different types of information.
Successive lines (records) represent successive mo-
ments, so time passes as one moves down the page.
The example here encodes an ascending major
scale. The leftmost column represents pitch using
the International Standards Organization (ISO)
pitch designations. The rightmost column repre-
sents piano fingerings. The columns are separated
by a single tab character. Each column of data be-
gins with an interpretation that identifies the type
of data being represented, and ends with a path ter-
minator.

**pitch **fingering
C4 R1
D4 R2
E4 R3
F4 R1
G4 R2
A4 R3
B4 R4
C5 R5
*- *-

The ISO pitch representation is predefined in
Humdrum, whereas the fingering representation
has been concocted for this example. Humdrum en-
codings can consist of any number and length of
columns.

Unlike the columns in a spreadsheet, Humdrum
columns can exhibit complicated paths through the
document. Columns can join together, split apart,
exchange positions, stop in mid-table, or be intro-
duced in mid-table. Because columns of Humdrum
data can roam about the table in a flexible way,
they are referred to as spines.

Humdrum spines are formally labeled using in-
terpretations (tokens beginning with an asterisk).
Exclusive interpretations (double asterisks) identify
the basic type of data being represented. Tandem
interpretations (single asterisks) provide supple-
mentary labels or tags that can clarify the state of
the data. Any number of tandem interpretations
can be added anywhere in a spine. In addition,
Humdrum provides ways of adding running com-
mentaries. Comments might pertain to the whole
encoding, to a given row or spine, to a given data
cell, or to a particular item of information within a
cell (such as a single letter or digit). Specially for-
matted comments are used to encode reference- or
cataloguing-related information. All types of com-
ments are designated by a leading exclamation
mark.

The most common Humdrum files encode the
‘‘score’’ of a complete work or movement. Typi-
cally, musical notes are encoded in the various
cells of the table; the most common use of a spine
is to represent a single musical part or instrument.

Humdrum includes some thirty predefined repre-
sentational schemes. Predefined representations in-
clude many common forms of music-related
information such as frequency, pitch, cents, scale
degree, melodic and harmonic intervals, duration,
dynamics, decibels, harmonic function, pitch-class
sets, lyrics, etc. However, spines can be used to
represent anything, and users can concoct their
own representations simply by writing an exclusive
interpretation with a unique identifier.

Of the predefined Humdrum representations, the
most popular is kern, a scheme intended to repre-
sent the basic or core musical information of notes,

13Huron

durations, rests, barlines, etc. (Huron 1997). (The
kern representation gets its name from the German
word for ‘‘core.’’) By way of illustration, the follow-
ing example encodes the accompanying musical ex-
cerpt of Figure 1 using the **kern representation.

!!!COM: Kabalevsky, Dmitri
!!!OTL: 2. Rondo–Dance
**kern **kern
*staff2 *staff1
*clefF4 *clefG2
*k[f#c#] *k[f#c#]
*M3/8 *M3/8
8r (16dd
. 16cc#
� �
8D’ 8dd’)
8A’ 8f#’ 8a’
8r (16b
. 16a#
� �
8BB’ 8b’)
8F#’ 8d’ 8f#’
8r (16g
. 16f#
� �
8BB-’ 8g’)
8G’ 8c#’ 8e’
8F#’ 8a’
� �
8D (8f#
8A 8d)
*- *-

The representation mirrors the two-dimension
structure of the score, rotated clockwise by 90 de-
grees. The tandem interpretations in this example
can be readily deciphered as representing staves,
clefs, key, and meter signatures. Reciprocal num-
bers are used to indicate durations. Pitches are rep-
resented using lower-case letters (middle C and
above) and upper-case letters (below middle C). Oc-
taves are represented using a system of letter repe-
tition. (See Huron 1995 for a complete description.)
In each complete measure, note the appearance of a
‘‘multiple stop.’’ Using the space character as a de-
limiter, more than one data token can appear in a
given spine. A single staff can be represented by
more than one spine, so complex polyphonic and
other textures can be represented.

It is important to understand that there is noth-
ing special about the **kern representation. For
example, in using the pitch letter names A–G, this
particular representation shows a bias towards
English-speaking users, while the use of numbers
for durations shows an American bias. However,
other predefined Humdrum representations allow
users to represent music using French ‘‘fixed-Do’’
solfege or the German system of pitch naming (e.g.,
H�B-natural, Es�S�E-flat, etc.) Encodings are
easily translated from one representation to an-
other. Users of Humdrum have tailored other repre-
sentations that better reflect special representation
requirements, from Australian aboriginal music to
Zydeco music.

Figure 1. Musical excerpt
from Kabalevsky.

14 Computer Music Journal

Humdrum Tools

The Humdrum Toolkit contains roughly 70 inter-
related yet stand-alone software tools. Each tool
can be invoked individually or in connection with
other tools. Typically, the tools are invoked in a
command-line shell or as statements in a program
or script. Humdrum commands conform to the
POSIX 2 portability standard (IEEE standard 1003.1,
available online at standards.ieee.org/catalog/olis
/posix.html) and thus can be used on all popular
operating systems. Any data that conforms to the
Humdrum syntax can be manipulated using the
Humdrum tools. Because the tools can be con-
nected with each other (and can also be connected
with non-Humdrum tools), there are many ways to
manipulate Humdrum data.

Some Sample Commands

One group of tools is used to extract or select sec-
tions of data. Vertical spines of data can be ex-
tracted from a Humdrum file using the extract
command. For example, if a file encodes four
musical parts (encoded in four spines), then the
extract command might be used to isolate one or
more given parts. The command

extract -f 1,3 filename

will extract the first (leftmost) and third column or
spine of data. Often it is useful to extract material
according to the encoded content without regard to
the position of the spine. For example, the follow-
ing command will extract all spines containing a
label indicating the tenor part(s):

extract -i ‘*Itenor’ filename

Instruments can be labeled by ‘‘instrument class’’
and can thus be extracted accordingly. The follow-
ing command extracts all of the woodwind parts:

extract -i ‘*ICww’ filename

Any vocal text can be similarly extracted:

extract -i ‘**text’ filename

Or, if the text is available in more than one lan-
guage, a specific language may be isolated:

extract -i ‘*LDeutsch’ filename

As noted above, users are free to define their own
interpretations. For example, if a user has coded
electro-encephalographic data in a spine (denoted
by, say, **EEG), the pertinent data can be extracted
using the same syntax:

extract -i ‘**EEG’ filename

Segments or passages of music can be extracted
using the yank command. Segments can be defined
by sections, phrases, measures, or other any user-
specified marker. For example, the following com-
mand extracts the section labeled ‘‘Trio’’ from a
minuet and trio:

yank -s Trio -r 1 filename

Suppose a user wanted to select the material in
measures 114 to 183. In the following command,
the-n option specifies a regular expression (�)
which might be used in this case as a barline
marker. The-r option identifies the range of, in this
case, the numbered labels on the barlines:

yank -n �-r 114-183 filename

In a representation (like **kern) that uses curly
braces to represent phrases, selecting the penulti-
mate phrase in the work might be achieved as
follows:

yank -o {-e }-r ‘$-1’ filename

Whenever appropriate, users can define general-
purpose patterns using the well-known regular ex-
pression syntax. This means that the tools can
operate in ways that are sensitive to the encoded
material, even without any ‘‘knowledge’’ of the
representational convention.

Some tools translate one representation into an-
other. For example, the mint command generates
melodic interval information. The mint command
only operates on pitch-related data; any non–pitch-
related data are ignored.

For example, if we apply the mint command to
the previous ascending scale, the resulting output
would transform the **pitch spine while leaving
the **fingering spine unaffected:

15Huron

**mint **fingering
[C4] R1
�M2 R2
�M2 R3
�m2 R1
�M2 R2
�M2 R3
�M2 R4
�m2 R5
*- *-

Two or more commands can be connected into a
pipeline. The following command locates all me-
lodic tritones—including compound (octave) equiv-
alents:

mint -c filename | egrep -n ‘((d5)|(A4))’

Because the Humdrum tools are stand-alone
commands, non-Humdrum tools can be interposed
at any point in the processing. For example, the
egrep command in the above pipeline is a com-
mon utility associated with the UNIX operating
system but available on many other systems as
well.

Depending on the type of translation, the result-
ing data can be searched for different things. The
following command identifies French sixth chords
by first translating the input into a predefined scale
degree representation. When provided with scale-
degree data, the regular expression 6 - .*4� means
‘‘find any lowered sixth scale degree that is concur-
rent with a raised fourth scale degree. The regular
expression 2 simply ensures that the sonority also
contains the second scale degree:

sdeg file | extract -i ‘**deg’ | ditto | grep
‘6-.*4�’ | grep 2

The following command locates all sonorities in
the music of Machaut where the seventh scale de-
gree has been doubled:

deg -t machaut* | grep -n ‘7[^-�].*7’

This command counts the number of phrases
that end on the subdominant pitch:

deg filename | egrep -c ‘(}.*4)|(4.*})’

The next command identifies all scores in the
current directory whose instrumentation includes a
tuba but not a trumpet:

grep -sl ‘!!!AIN.*tuba’ * | grep -v ‘tromp’

Predefined pitch and duration representations
can be translated to MIDI using the Humdrum
midi or smf commands; the perform command
provides a simple command-line MIDI player. For
example, the following pipeline generates a MIDI
performance of the second phrase in the oboe part:

extract -i ‘*Ioboe’ filename | yank -o {-e }
-r 2 | midi | perform

Similarly, the following command will play the
first and last measures from a section marked
‘‘Coda’’ at half the notated tempo from a file
named Cui:

yank -s ‘Coda’ Cui | yank -o ^�-r 1,$ | midi
| perform -t .5

The ms command generates input for the Mup
notation program written by John Krallmann and
William Krauss. The following pipeline generates
graphical PostScript output of a notational render-
ing of the first 20 measures of just the string parts:

yank -o �-r 1-20 filename | extract -i
‘*ICstr’ | ms

Robert Gjerdingen and Po-Yan Tsang have writ-
ten tools that translate between Humdrum and the
Finale Engima format. Other output tools can be
used to generate Csound score files.

The context command provides a simple way of
searching for patterns in particular contexts. The
command

context -n 2

changes a sequence of tokens, such as the following
Roman numeral harmonies:

**harm
I
V
iii
VI7
ii;
*-
into a sequence of paired tokens, or ‘‘digrams,’’ as
follows:

16 Computer Music Journal

**harm
I V
V iii
iii VI7
VI7 ii;
.
*-

In effect, the resulting representation indicates that
a I chord is followed by a V chord; a V chord is fol-
lowed by a iii chord, and so on. An inventory of the
most common two-chord progressions in Bach’s
chorale harmonizations can be created by simply
sorting and counting the number of unique data
records.

extract -i ‘**harm’ chorales* | context
-n 2-o � | sort | uniq -c | sort -n

An inventory of three-chord progressions can be
generated by changing the -n 2 option to -n 3.

Earlier we saw that the extract command can
be used to isolate one or more spines from a file.
The reverse process is achieved using the Hum-
drum assemble command, which amalgamates in-
dividual spines into a single file. An obvious use of
this would be to assemble a full score from individ-
ual parts. However, assemble is more commonly
used to amalgamate different kinds of information
in a single document. Multiple files can be aligned
simply by specifying the inputs and output:

assemble degree.file interval.file
� filename

Suppose we would like to determine whether de-
scending minor seconds are more likely to occur as
Fa–Mi or Do–Ti. We can use the mint command to
characterize melodic intervals and the solfa com-
mand to characterize scale degrees:

mint melody � file1
solfa melody � file2

We can then use assemble to amalgamate the
two kinds of representations and use grep to
search for the appropriate combination of interval
and scale degree:

assemble file1 file2 | grep -c ‘-m2.*mi’
assemble file1 file2 | grep -c ‘-m2.*ti’

Innumerable variants of this technique are possi-

ble. Several different representations of the same
music can be coordinated in a single file. For exam-
ple, a user might search for all instances of a de-
scending minor third in the soprano voice, in
preparation for a suspension (occurring in either
the alto or tenor), leading to a half cadence, with
the soprano terminating on a tonic pitch ap-
proached from below. (Such complicated examples
are discussed in detail in the Humdrum User
Guide (Huron, 1999).)

A more general tool, humsed, implements a
stream editor conforming to the syntax of the pop-
ular sed stream editor used on UNIX systems.
Both sed and humsed are Turing-complete, which
means that any manipulation of strings of charac-
ters that can be achieved using a computer can be
done using humsed. In practice, stream editors
such as humsed are used for more modest functions
like simple substitutions. For example, a user
might create a simple script to rewrite the pitches
in a trumpet piece as valve combinations.

At the University of Waterloo, Jonathan Berec
has collected data from trumpet performers esti-
mating the degree of difficulty for various finger/
valve combinations. On a scale from 1 (least
difficult) to 10 (most difficult), the valve/finger se-
quence 1–3 followed by 2 was rated by performers
as 9.7 in difficulty, whereas the sequence 1–2 fol-
lowed by 2 was rated 5.8. Having used humsed to
translate pitches to valve combinations, the
context command can be used to assemble pairs
of successive valve-combination changes. A subse-
quent humsed script can then be used to replace
valve-combination changes by their difficulty rat-
ings. In other words, any monophonic musical
score in the range of the trumpet can be processed
to generate a new spine indicating the degree of
moment-to-moment fingering difficulty:
**kern **valves **difficulty
B4 2 0
D#5 2 0
A4 1-2 3.0
G#4 2-3 6.0
A4 1-2 5.0
F4 1 1.5
C4 0 1.0
*- *- *-

17Huron

When the output is piped to a sound synthesis pro-
gram such as Csound, the ‘‘difficulty’’ information
might be used to modify performance parameters
so that difficult fingerings are associated with hesi-
tation, fluctuations in intonation, or other acoustic
cues that add realism to the performance.

A composer might try different transpositions to
determine the easiest (or most difficult) key for a
work. For example, Figure 2 shows a graph of the
average fingering difficulty for Herbert Clarke’s
Stars in a Velvety Sky, a virtuoso trumpet work
composed by a skilled trumpet performer. The
work was methodically transposed covering all
keys in which the work might be theoretically
played. In general, the average fingering difficulty
tends to decrease as the work is transposed higher
in pitch owing to the greater variety of alternative
fingerings available for high notes compared with
low notes. Apart from this general trend, signifi-
cant changes in average fingering difficulty occur
from key to key. In works composed by trumpet
virtuosi, Mr. Berec and I have found a marked ten-
dency for the lowest fingering difficulty to corre-
spond with the key in which the work was actually

written. This pattern was not evident in trumpet
works written by non-trumpet players.

The values for Figure 2 used the Humdrum
trans tool, which allows passages to be transposed
in various ways. The trans tool permits indepen-
dent diatonic and chromatic offsets, so it is possi-
ble to transpose works into different modes as well
as different keys. For example, the following com-
mand causes a simple diatonic shift, and so per-
forms a Joplin rag in D Dorian rather than C major:

trans -d 1 Joplin | midi | perform

Two-Dimensional Patterns

Tools such as grep allow users to carry out string
searches where the pattern of interest can be found
on a single line. The two-dimensional structure of
Humdrum representations means that important
musical patterns can stretch over many lines or
records. The Humdrum patt command provides a
two-dimensional equivalent to grep that allows
users to search for patterns spanning multiple
records.

Figure 2. Graphical
representation of the
fingering difficulty for
Herbert Clarke’s Stars in
a Velvety Sky.

18 Computer Music Journal

Consider, for example, the task of searching for
the pitch pattern B–A–C–H. As a sequential pat-
tern, the Humdrum syntax will cause such a pat-
tern to span several lines. The patt command
allows users to specify a multi-record pattern tem-
plate. A suitable template might be as follows:

[Bb] �
[Aa] �
[Cc] �
[Hh] �

The square brackets are used to indicate character
classes (e.g. ‘‘B’’ or ‘‘b’’). The plus sign following
the tab means ‘‘one or more matching records.’’
Consequently, the above template refers to ‘‘one or
more (data) records matching either a lower- or

uppercase character ‘B’ followed by one or more rec-
ords matching either a lower- or uppercase charac-
ter ‘A’ followed by one or more records matching
either a lower- or uppercase character ‘C’ followed
by one or more records matching either a lower- or
uppercase character ‘H’.’’ We can use this template
after we have translated our input into the German
system for pitch representation. Assuming the file
BACH contains the above template, the following
two commands will search for all instances of B–A–
C–H and play each instance using MIDI:

tonh -x file | ditto -s � � file.german
patt -e -f BACH file.german | midi | perform

Figure 3 shows an example of a formerly un-
known instance of B–A–C–H discovered by Walter

Figure 3. A formerly
unknown instance of
B–A–C–H in Bach’s
Concerto No. 2.

19Huron

Hewlett in Bach’s Brandenburg Concerto No. 2—
just six measures before the end of the first move-
ment. The B–A–C–H pattern occurs in the cello
and contrabass parts.

Rather than searching for pitch patterns, a musi-
cally more useful search might focus on melodic
intervals. Suppose, for example, we were looking
for motivic statements in the opening movement
of Beethoven’s Fifth Symphony. The following
template will locate all passages that begin with
any sonority (‘‘.*’’), followed by two perfect uni-
sons, and terminated by either a major or minor de-
scending third:

.*
P1
P1
-[mM]3

In some applications, it is often useful to gener-
ate pattern templates automatically. For example,
in serial and twelve-tone compositions, the Hum-
drum reihe command can be used to generate all
set variants from some prime form. Then the patt
command can be iteratively invoked to search for
each set form. Normally, a pitch-class set (**PC)
representation would be used to conduct the
search.

Figure 3. Continued.

20 Computer Music Journal

A unique characteristic of set-related practices is
the constructing of simultaneities using successive
elements from a row. That is, an abstract sequence
of tones (1, 2, 3, 4, 5) might appear as tone 1, fol-
lowed by tones 2, 3, and 4 (sounding concurrently),
followed by tone 5. The patt command provides
an option that instructs patt to match each input
record with the maximum number of possible con-
tiguous template patterns.

Figure 4 shows a sample passage from the first
movement of Webern’s Opus 24 Concerto, with
the row statements identified using a script that it-
eratively invokes patt for each row variant. Notice

that patt has identified patterns both within and
across instruments. When appropriate, alternative
names for tone-row statements will be identified.
In the second system, patt also identified a state-
ment of I1 (identified only by numbered pitches).
Although this statement seems to be questionable,
the pitches of I1 are contiguous across the partici-
pating instruments.

The patt command provides an option that
causes a new spine to be output containing user-
defined tags (such as P5, RI6, Theme A, etc.). These
tagged outputs can be used as input for another pat-
tern search, hence users can use patt to search for

Figure 4. A passage from
the first movement of We-
bern’s Opus 24 Concerto,
with the row statements

identified using a script
that iteratively invokes
patt for each row
variant.

14 15 16

I5

R5

1

2
3

4
5

6

7

8

99

10

11

21Huron

patterns of patterns, etc. For example, the following
Humdrum input might match a template whose
purpose is to identify sonata allegro forms:

**sections
Introduction
Exposition
Development
Recapitulation
Coda
*-

Similarity

A characteristic of pattern searches is that only two
states are possible: either a passage matches the de-
fined template or it does not. Because music relies
extensively on the art of variation, however, it is
more important for many musical applications to
be able to characterize degrees of resemblance than
identify absolute matches.

While the concept of ‘‘similarity’’ seems intui-
tively obvious, as an operational concept it proves
remarkably complex. A basic distinction can be
made between similarity for numerical (or paramet-
ric) data and non-numeric (non-parametric) data.
Measurements of similarity for parametric data can
be devised using variants of mathematical correla-
tion, such as Pearson’s r. Measurements of similar-
ity for non-parametric data have been explored
using various algorithms in the field of approxi-
mate string matching (see Hall and Dowling 1980).

Humdrum provides a parametric similarity tool
(correl) for characterizing numerical similarity,
such as determining similar pitch contours. A non-
parametric Humdrum tool (simil) allows users to
define similarity according to an extended class of
Damereau–Levenshtein edit-distances (see Orpen
and Huron 1992 for details).

The simil tool allows users to define penalties
for various edit actions such as deletions, inser-
tions, and substitutions; users are also free to de-
fine the basic representation used by simil.
Depending on the application, a user might choose
pitch similarity, interval similarity, contour/dura-
tion similarity, articulation similarity, harmonic

similarity, or other forms or combinations of simi-
larity. Note that simil is not restricted to
notation-based applications; it is equally adept at
all non-parametric similarity tasks, such as charac-
terizing spectral similarity, fingering similarity,
similarity of conducting gestures, etc. Any repre-
sentation that a user can concoct can be used as in-
put for simil.

A unique property of the Humdrum simil tool
is that it allows users to define asymmetrical simi-
larity measures, where A is judged more similar to
B than B is to A. Psychologically, the capacity for
asymmetrical similarity measures is important. In
prototype theory, for example, it is known that
people tend to judge the color pink as more similar
to the color red (prototype) than vice versa. Simi-
larly, listeners tend to judge a musical variation as
more similar to the theme (prototype) than the re-
verse comparison. Several contrasting illustrations
using simil are described in Orpen and Huron
(1992).

Other Tools

The above examples have introduced only a hand-
ful of the Humdrum tools and have only scratched
the surface in illustrating the information process-
ing capabilities of Humdrum. As we have seen, the
strength of the Humdrum tools lies not in their in-
dividual capabilities, but in their endless variety of
configurations and interactions. The Humdrum
web site (humdrum.net) provides hundreds of addi-
tional tutorial examples that illustrate a variety of
music-related information-processing tasks.

Scripts

Humdrum’s command-line interface is frequently
regarded as the principal impediment to more
widespread use. However, programmers will readily
understand that the command-oriented structure is
Humdrum’s principal strength, because it allows
complex scripts to be written and embedded in
one’s favorite programming language. Scripts can
be created both to carry out routine operations and

22 Computer Music Journal

to package a complex process as a stand-alone
application.

An example of the latter can be found in Theme-
finder, a ‘‘name-that-tune’’ web application located
at www.themefinder.com. Themefinder provides a
simple interface that allows users to search a data-
base of approximately 25,000 musical themes and
incipits by specifying various search keys, such as
the up/down melodic contour (Kornstädt 1998).
The engine underlying Themefinder is a Humdrum
script that was written in a single afternoon. The
actual searching is done by the UNIX grep com-
mand. It is important to understand that Theme-
finder actually limits users’ searching capabilities.
Humdrum itself allows far more ways of accessing
and searching the data, but a form-based web inter-
face provides greater convenience.

Another example of the value of scripting is evi-
dent in the simplicity with which Humdrum can
be connected to other software tools. Figure 5
shows a musical map generated by connecting
Humdrum to GMT, a free ‘‘generic mapping tool’’
that is used by professional geographers to generate
high-quality PostScript maps. Like the Humdrum
commands, GMT is invoked as a POSIX-format
command with a potentially large number of map-
drawing options. As part of a project to study
culture-related musical features, Bret Aarden wrote
a script that formats Humdrum’s geographical ref-
erence records as input to GMT (Aarden and Huron
2001). Figure 5 shows a simple contour map indi-
cating the density of Germanic folksongs in minor
keys. The map was generated using data from the
Essen Folksong Collection (Schaffrath 1995). The
important point is that any type of music-related
search can be ‘‘piped’’ to GMT, resulting in a
tailor-made musical map.

Technical Specifications

Humdrum is written in a combination of lan-
guages, including C, C��, awk, kornshell, yacc,
lex, and perl. The toolkit is available free of charge
via the web, and source code is included in the dis-
tribution. Humdrum can be used with all popular
operating systems; however, a POSIX-conformant

command shell is required. Complete documenta-
tion is available, including information describing
all pre-defined representations, software documen-
tation for all Humdrum tools, introductory tutori-
als, examples, and newsletters. A developers kit is
available that includes a syntax checker, input
parser, and test suites. Documentation is available
in both printed and online versions. The best gen-
eral introduction to the Humdrum Toolkit is Mu-
sic Research Using Humdrum: A User’s Guide
(Huron 1999).

Drawing Lessons from the Humdrum Experience

Whether or not one uses Humdrum, there are a
number of broad lessons arising from the Hum-
drum experience that are pertinent to creating
general-purpose music-related software.

In software design, a useful distinction can be
made between closed and open applications. A
closed application can be defined as one serving a
well-defined problem space where all tasks can be
specified in advance. In closed applications, it is
possible to construct efficient stand-alone software
that provides an intuitive and effective user inter-
face. However, in research or development-related
environments, the types of tasks users pursue are
unpredictable and thus open-ended. In such envi-
ronments, it is impossible to conceive of a single
integrated application that will serve all purposes,
and so a software tools approach is preferable.

Whenever possible, use flat text (ASCII) represen-
tations. This spares programmers the trouble of
having to design special-purpose editors and other
general tools for each representation. Using text-
based representation also avoids erecting barriers
for users who wish to define and use their own rep-
resentations.

Do not attempt to represent everything in one gi-
gantic encoding scheme. As in the case of struc-
tured programming, it is better to segment the
representational problem so encoding, editing, and
processing remain manageable.

Do not force users to encode information (such
as pitch, duration, title, etc.) that is not of interest
to the user.

23Huron

The effectiveness of text-based representations is
greatly increased by pushing the data structures
into the data representation. In its use of a tabular
format of spines and records, Humdrum representa-
tions are inherently two-dimensional and thus
closely echo the structure of sequential and concur-
rent events typical of music. In effect, Humdrum
representations form a linked-list lattice structure.
Instead of creating an internal data structure acces-

sible only within a program, Humdrum places the
linked-list structure within the data representation.
This approach greatly simplifies access to and pro-
cessing of the data.

Label or tag the representations so each software
tool can identify which data the tool can legiti-
mately manipulate, which data it should leave un-
touched, and which data constitute errors.

In research and development situations, create

Figure 5. A musical map
generated by connecting
Humdrum to GMT, a free
generic mapping tool.

24 Computer Music Journal

software tools that can be executed within any pro-
gramming language or script.

When processing information, at each step en-
sure that users can intercept the data and invoke
either commercial tools or user-crafted scripts to
massage the information.

Do not assume that users will perform a given
task using the tool you have provided. Users may
disagree with the approach or be more familiar
with the operation of another tool.

Avoid writing software that already exists, such
as general ‘‘sort’’ routines or music notation edi-
tors. Having to write such software usually means
that insufficient attention has been paid to allow-
ing users to connect easily with other software.

Provide comprehensive and complete documen-
tation for all tools so that conscientious users can
comprehend and anticipate the limits of operation,
and so programmers can identify suspected bugs
with confidence. In many ways, basic Humdrum
tools like extract, assemble, patt, and
humsed are structured equivalents of the popular
UNIX utilities cut, paste, grep, and sed.
Whereas the UNIX tools operate indiscriminately
on all data in the standard input, the Humdrum
equivalents pass comments and reference informa-
tion intact, preserve the structure and syntax of the
input, and operate only on specified data types
within a data stream. In addition, the Humdrum
equivalents update the interpretation information
where appropriate so that subsequent tools recog-
nize that the data has been modified in a particular
manner.

The importance of data typing is evident in the
burgeoning conventions for filename extensions
such as ‘‘.jgp,’’ ‘‘.gif,’’ ‘‘.html,’’ ‘‘.mid,’’ ‘‘.mp3,’’ etc.
These tags are often used by application software to
recognize files that can be processed, and they are
appended to output files to specify the data format.
The Humdrum ‘‘interpretation’’ records provide a
more nuanced and powerful way of data tagging. By
placing the type tags within the file or data stream
itself, Humdrum allows multiple forms of informa-
tion to co-exist within a single document.

The benefit of this approach is that it preserves
structural relationships between various data types,
thereby facilitating contextually sensitive process-
ing of multiple forms of data concurrently. For ex-

ample, with Humdrum it is straightforward to
process notation-related and performance-related
data concurrently. By way of illustration, in Hum-
drum it would be relatively easy for a user to
search for all notated mordents where the key ve-
locity of a MIDI performance is higher for the sec-
ond note than for the third note of the mordent. By
contrast, if the notation data and MIDI data were
stored in separate files, performing such a search
would be technically challenging.

Conclusion

This article has provided a cursory introduction to
Humdrum. Humdrum provides a syntax that al-
lows users to represent arbitrary forms of time-
dependent information. It also provides a set of
utilities or tools that manipulate Humdrum repre-
sentations in various ways. The tools perform
operations such as displaying, performing, search-
ing, editing, transforming, extracting, linking, clas-
sifying, labeling, and comparing. The tools can be
used individually or linked together to carry out a
variety of tasks. Users can intercept representations
at any point and write their own tools that aug-
ment the functioning of Humdrum. In addition, the
Humdrum tools can be accessed from within stan-
dard programming languages.

After more than a decade, the Humdrum Toolkit
remains without peer in music information pro-
cessing applications. Its principal attraction has
been its broad scope for musical problem-solving
and its flexibility of operation. Its principal detrac-
tions have been its command-line interface, and its
presumption that users have facility with UNIX-
like shell commands. Especially for users with no
prior programming experience, the learning curve
for Humdrum can seem intimidating. While not all
computer music researchers will benefit from using
Humdrum, a number of design features and criteria
provide useful lessons for developing future music-
related software.

Acknowledgments

Continued software development has benefited
from the efforts of many individuals. Two graphic

25Huron

user interfaces have be written: one by Michael
Taylor at the University of Belfast (Taylor 1996),
and a second by Andreas Kornstädt at the Univer-
sity of Hamburg (Kornstädt 1996). Robert Gjerdin-
gen at Northwestern University and Po-Yan Tsang
at the University of Waterloo wrote Humdrum/Fi-
nale translators. Kyle Dawkins at McGill Univer-
sity wrote extensions for coordinating Humdrum
with compact discs. Utilities for making Humdrum
Lisp-compatible have been written by Jörg Garbers
and Thomas Noll at the Technical University of
Berlin. Craig Sapp at Stanford University has writ-
ten a number of utilities, including a harmonic an-
alyzer. Another harmonic analyzer developed by
David Temperley (Temperley 2001) at Columbia
University and the Eastman School of Music was
rendered Humdrum-compatible by Bret Aarden at
the Ohio State University. Michael Good of Recor-
dare Inc. has fashioned an XML scheme inspired by
Humdrum (Good 2000).

The Center for Computer Assisted Research in
the Humanities has been indispensable in provid-
ing direct and indirect support for Humdrum. I am
grateful to Drs. Walter Hewlett and Eleanor
Selfridge-Field for making the MuseData editions
available online in Humdrum format. Other schol-
ars have provided databases initially encoded using
other representation schemes, including John
Miller at North Dakota State University, Helmut
Schaffrath at the University of Essen, and Harry
Lincoln at the State University of New York at
Binghamton.

More than 80 music collections have been en-
coded directly in the Humdrum format. Among
those who have encoded music using Humdrum
are Suzi Wint, Sandra Serafini, Lonney Young, Ben
Koen, Eric Berg, Norma Welch, Franz Wiering,
Joshua Veltman, Igor Karaca, Natasa Kara, Paul von
Hippel (von Hippel 1998), Stefan Morent (Morent
2000), Matthew Royal (Huron and Royal 1996), and
Denis Collins (Collins and Huron, in press).

Further thanks are due to Keith Orpen, Keith
Mashinter, Bill Thompson (Thompson and Stainton
1995–96), Jasba Simpson (Simpson and Huron
1993), Jonathan Wild (Wild 1996), Randall Howard,

Simon Clift, Maki Ishizaki, Bo Alphonce, Bruce
Pennycook, David Wessel, Chris Chafe, Max Ma-
thews, John Howard, Gregory Sandell, Perry Ro-
land, and Jordi Martin. I am especially indebted to
my former research assistants Tim Racinsky and
Kyle Dawkins for their professional programming
efforts.

References

Aarden, B., and D. Huron. 2001. ‘‘Mapping European
Folksong: Geographical Localization of Musical Fea-
tures.’’ Computing in Musicology 12:169–183.

Collins, D., and D. Huron. In press. ‘‘Voice-leading in
Cantus Firmus-Based Canonic Composition: A Com-
parison Between Theory and Practice in Renaissance
and Baroque Music.’’ Computers in Music Research.

Erickson, R. 1976. ‘‘DARMS: A Reference Manual.’’
Binghamton, NY: typescript.

Good, M. 2000. ‘‘MusicXML for Notation and Analysis.’’
Computing in Musicology 12:113–124.

Hall, P., and G. Dowling. 1980. ‘‘Approximate String
Matching.’’ ACM Computing Surveys 12:381–402.

Hall, T. 1997. ‘‘DARMS: The A-R Dialect.’’ In E.
Selfridge-Field, ed. Beyond MIDI: The Handbook of
Musical Codes. Cambridge, Massachusetts: MIT Press,
pp. 573–580.

Hewlett, W. B. 1997. ‘‘MuseData: A Multipurpose Repre-
sentation.’’ In E. Selfridge-Field, ed. Beyond MIDI: The
Handbook of Musical Codes. Cambridge, Massachu-
setts: MIT Press, pp. 402–447.

Howard, J. 1997. ‘‘Plaine and Easie Code: A Code for Mu-
sic Bibliography.’’ In E. Selfridge-Field, ed. Beyond
MIDI: The Handbook of Musical Codes. Cambridge,
Massachusetts: MIT Press, pp. 343–361.

Huron, D. 1992. ‘‘Design principles in computer-based
music representation.’’ In A. Marsden and A. Pople,
eds. Computer Representations and Models in Music.
London: Academic Press, pp. 5–59.

Huron, D. 1995. The Humdrum Toolkit: Reference Man-
ual. Stanford, California: Center for Computer As-
sisted Research in the Humanities.

Huron, D. 1997. ‘‘Humdrum and Kern: Selective Feature
Encoding.’’ In E. Selfridge-Field, ed. Beyond MIDI: The
Handbook of Musical Codes. Cambridge, Massachu-
setts: MIT Press, pp. 375–401.

Huron, D. 1999. Music Research Using Humdrum: A
User’s Guide.

26 Computer Music Journal

Huron, D., and M. Royal. 1996. ‘‘What is Melodic Ac-
cent? Converging Evidence from Musical Practice.’’
Music Perception 13(4):498–516.

Kornstädt, A. 1996. ‘‘SCORE-to-Humdrum: A Graphical
Environment for Musicological Analysis.’’ Computing
in Musicology 10:105–122.

Kornstädt, A. 1998. ‘‘Themefinder: A Web-Based Melodic
Search Tool.’’ Computing in Musicology 11:231–236.

Morent, S. 2000. ‘‘Representing a Medieval Repertory
and its Sources: The Music of Hildegard von Bingen.’’
Computing in Musicology 12:19–33.

Orpen, K., and D. Huron. 1992. ‘‘Measurement of Simi-
larity in Music: A quantitative Approach for Non-
Parametric Representations.’’ Computers in Music
Research 4:1–44.

Schaffrath, H. 1995. The Essen Folksong Collection.
Stanford, California: Center for Computers Assisted
Research in the Humanities.

Simpson, J., and D. Huron. 1993. ‘‘The Perception of
Rhythmic Similarity: A Test of a Modified Version
of Johson-Laird’s Theory.’’ Canadian Acoustics 21(3):
89–90.

Smith, L. 1972. ‘‘SCORE : A Musician’s Approach to

Computer Music.’’ Journal of the Audio Engineering
Society 20:7–14.

Taylor, W. M. 1996. Humdrum Graphical User Inter-
face. MA Thesis, Music Technology, Queen’s Univer-
sity of Belfast, Ireland.

Temperley, D. (2001). The Cognition of Basic Musical
Structures. Cambridge, Massachusetts: MIT Press.

Thompson, W.F., and M. Stainton. 1995–96. ‘‘Using
Humdrum to Analyze Melodic Structure: An Assess-
ment of Narmour’s Implication-Realization Model.’’
Computing in Musicology 10:24–33.

Vercoe, B. 1986. Csound: A Manual for the Audio Pro-
cessing System and Supporting Programs with Tutori-
als. Cambridge, Massachusetts: MIT Media Lab.

von Hippel, P. 1998. 42 Ojibway Folksongs in the Hum-
drum **kern Representation: Electronic Transcrip-
tions from the Densmore Collections. Stanford,
California: Center for Computer Assisted Research in
the Humanities.

Wild, J. 1996. ‘‘A Review of the Humdrum Toolkit:
UNIX Tools for Musical Research, Created by David
Huron.’’ Music Theory Online 2(7). Available online at
www.societymusictheory.org/mto/.

