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ABSTRACT

The realisation and evaluation of a musical key extraction
algorithm that works directly on raw audio data is pre-
sented. Its implementation is based on models of human
auditory perception and music cognition. It is straightfor-
ward and has minimal computing requirements. First, it
computes a chromagram from non-overlapping 100 msecs
time frames of audio; a chromagram represents the likeli-
hood of the chroma occurrences in the audio. This chro-
magram is correlated with Krumhansl’s key profiles that
represent the perceived stability of each chroma within
the context of a particular musical key. The key profile
that has maximum correlation with the computed chroma-
gram is taken as the most likely key. An evaluation with
237 CD recordings of classical piano sonatas indicated a
classification accuracy of 75.1%. By considering the ex-
act, relative, dominant, sub-dominant and parallel keys as
similar keys, the accuracy is even 94.1%.

1. INTRODUCTION

Besides tempo, genre and music mood, musical key is
an important attribute for Western (tonal) music though
only musically well-trained people can identify the key in
a piece of music easily [3]. Knowing the key of a piece of
music is relevant for further music analysis or for music
applications such as mood induction; the mode of the key
is deemed to provide a specific emotional connotation [6].

1.1. Related work

The extraction of key from music audio is not new, but
not often reported in literature (see, for instance, Leman’s
algorithm [8] for an exception in which human tone center
recognition is modeled).

Many algorithms that are found in literature work on
symbolic data only (e.g., MIDI or notated music) by
eliminating keys if the pitches are not contained in the
key scales [9], by looking for key-establishing harmonic
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aspects [4] or key-establishing aspects at accent loca-
tions [1], by using the tonal hierarchy [7] extended with
the role of subsidiary pitches and sensory memory [5], by
searching for keys in the scalar and chordal domain in par-
allel [12], by harmonic analysis [11], by median filtering
using an inter-key distance [10], or by computing a inter-
key distance using a geometric topology of tonality (i.e.,
the spiral array) [2].

2. METHOD

Our approach to key extraction starts by computing a
chromagram over six octaves from A0 (27.5 Hz) to A6
(1760 Hz) from the raw audio data. This chromagram rep-
resentation is used as input to the maximum-key profile
correlation (MKC) algorithm to get the musical key.

2.1. Chromagram computation

The chromagram is defined as the restructuring of a spec-
tral representation in which the frequencies are mapped
onto a limited set of 12 chroma values in a many-to-one
fashion. This is done by assigning frequencies to the ‘bin’
that represents the ideal chroma value of the equally tem-
pered scale for that frequency. The ‘bins’ correspond to
the twelve chromas in an octave.

To this end, the spectrum ���� is modelled as a com-
bination of the spectral content of the perceptual pitch
and the musical background, denoted as background level
���� at frequency � ,
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where the spectral pitch content is modeled as a scaled
impulse train reflecting the interpretation of pitch as a har-
monic series; it contains high energy bursts at integral
multiples ���, for harmonic index �. Further, � denotes
the number of harmonics, ��� �� denotes the factor con-
trolling peak contribution to the pitch percept, � ��� is an
arc-tangent function representing the transfer function of
the auditory sensitivity filter, and ���� is the gain for har-
monic �.

The computation of Equation 1 is done by adding
harmonically compressed amplitude FFT-based spectrum



representations, for which the following properties are im-
plemented.

1. Spectral content above 5 kHz is cut off by down-
sampling the signal. It is assumed that harmonics
in the higher frequency regions do not contribute
significantly to the pitches in the lower frequency
regions.

2. Only a limited number of harmonically compressed
spectra are added. We use � � ��.

3. Spectral components (i.e., the peaks ���� �
������) are enhanced to cancel out spurious peaks
that do not contribute to pitches.

4. Spectral components at higher frequencies con-
tribute less to pitch than spectral components at
lower frequencies. We use � � �	��.

5. The frequency abscissa is transformed to a loga-
rithmic one by means of interpolation, since human
pitch perception follows logarithmic laws.

6. A weighting function is used to model the human
auditory sensitivity; the perceived loudness of a
pitch depends on its frequency. We use an arc-
tangent function.

From an algorithmic point of view, the input signal is
partitioned in non-overlapping time frames of 100 mil-
liseconds. If the signal is in stereo format, a mono version
is created by averaging both channels first.

Since further processing considers only the musical
pitches from A0 (27.5 Hz) to A6 (1760.0 Hz), the har-
monic compression is done over 6 octaves from 25 Hz un-
til 5 kHz, also to capture some harmonics of the higher
pitch frequencies. So, spectral content at frequencies
greater than 5 kHz are not taken into account. A low-
pass filtering of 10 kHz by FIR approximation and a dec-
imation process bandlimits and downsamples the signal.
This down-sampling decreases dramatically the comput-
ing time necessities without affecting results seriously.
The ’remaining’ samples in a frame are multiplied by a
Hamming window, zero-padded, and the amplitude spec-
trum is calculated from a 1024-point FFT. This spectrum
consists of 512 points spaced 4.88 Hz on a linear fre-
quency scale. Next, a procedure is applied aiming at en-
hancing the peaks without seriously affecting frequencies
or their magnitudes. Only values at and around the spec-
tral peaks are taking into account by setting all values at
points that are more than two FFT points (9.77 Hz) sepa-
rated from a relative maximum, equal to 0. The resulting
spectrum is then smoothed using a Hanning filter.

Since a linear resolution of 4.88 Hz is far too limited for
the lower pitch regions (the pitch frequency difference be-
tween C2 and C
2 is 3.89 Hz), the values of the spectrum
on a logarithmic frequency scale are calculated for 171
(���	
���) equidistant points per octave by cubic-spline
interpolation. The interpolated spectrum is multiplied by
a raised arc-tangent function, mimicing the sensitivity of
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Figure 1. Mean probe tone rating (or key profiles) in the
context of the key C major (a) and the key C minor (b).
Adopted from [7]

the human auditory system for frequencies below 1250
Hz. The result is shifted along the logarithmic frequency
scale, multiplied by a decreasing factor � and added for all
harmonics to be resolved (� � ��) resulting in the har-
monically compressed spectrum defined over at least six
octaves.

The chromagram for each frame is computed by locat-
ing the spectral regions in the harmonically compressed
spectrum that correspond with each chroma in A-440
equal temperament. For the pitch class C, this comes
down to the six spectral regions centered around the pitch
frequencies for C1 (32.7 Hz), C2 (65.4 Hz), C3 (130.8
Hz), C4 (261.6 Hz), C5 (523.3 Hz) and C6 (1046.5 Hz).
The width of each spectral region is a half semitone
around this center. The amplitudes in all four spectral re-
gions are added and normalized to form one chroma re-
gion. Adding and normalizing the chromagrams over all
frames results in a chromagram for the complete music
sample.

2.2. Maximum key-profile correlation

The maximum key-profile correlation is an algorithm for
finding the most prominent key in a music sample [7].
Originally, the algorithm was devised for symbolic encod-
ings of music (e.g., MIDI). Here, it is used as a back-end
to a signal processing step that works on raw audio data.

The MKC algorithm is based on key profiles that
represent the perceived stability of each chroma within
the context of a particular musical key. Krumhansl and
Kessler [7] derived the key profile by a probe tone rating
task. In this task, subjects were asked to rate, on a scale of
1 to 7, the suitability of various concluding pitches after
they had listened to a preceding musical sample that estab-
lished a particular key. The mean ratings represent the key
profiles and show clear differences in the perceived stabil-
ity of the chromas: highest ratings are given to the tonic,
and the other two pitches of the triad, followed by the rest
of pitches of the scale to be concluded by the non-scale
pitches (see Figure 1).

Key profiles only depend on the relationship between a
pitch and a tonal center and not on absolute pitches. Con-
sequently, profiles for different major or minor keys are
all transpositions of each other.

The MKC algorithm is based on the assumption that



the most stable chromas occur most often in a music sam-
ple. It computes the correlation (i.e., Pearson’s product
moment correlation) between the distribution of chroma
occurrences in the musical sample and all 24 key profiles.
Recall the chromagram takes the role of this distribution
of chroma occurences given as a vector with 12 elements.
The key profile that provides the maximum correlation is
taken as the most probable key of the musical sample. The
correlation value can be used as the salience of the per-
ceived key or the degree of tonal structure of the music
sample.

The strong point of the MKC algorithm is that it uses
a differential weighting of all scale pitches and non-scale
pitches. This means that the tonic, the perfect fifth and the
third and all other pitches vary in importance in establish-
ing a key at listeners.

3. EVALUATION

The evaluation of the algorithm consisted of a perfor-
mance assessment in finding the correct key from a set of
237 performances of classical piano sonatas on CD. The
correct key was defined as the main key for which the mu-
sical composition was originally composed. Recall that
music composers use various key modulating techniques
to build up tension and relaxation in the music. However,
many compositions start and end with the same key; these
pieces are called monotonal.

The following CDs were used. All 237 recordings of
the CDs were used in the experiment.

Rosalyn Tureck
J.S. Bach, The Well-tempered Clavier Books I & II, 48 Preludes
and Fugues
Recording New York 12/1952 - 5/1953
Remastering 1999, Deutsche Grammophon, 463 305-2

Jeno Jando
J.S. Bach, The Well-tempered Clavier Book I, 24 Preludes and
Fugues
Naxos Classical, 8.55379697, 1995

Vladimir Askenazy
D. Shostakovich, 24 Preludes & Fugues, op.87,
Decca, 466 066-2, 1999.

Glenn Gould
J. Brahms, The Glenn Gould Edition,
Sony Classical, Sony Music Entertainment, 01-052651-10,
1993.

Evgeny Kissin
F.F. Chopin, 24 Preludes Op. 28, Sonate no. 2, Marche funebre /
Polonaise op.53
Sony Classical, Sony Music Entertainment.

The original key of the compositions was compared
with the extracted key from the CD-PCM data of the piano
performances in fragments of 2.5, 5.0, 10.0, 15.0, 20.0,
25.0 and 30.0 seconds at the start, at the middle and at
the end of the performances. Lastly, the complete perfor-
mance was analysed. Note that a simple time measure of 4
beats at a tempo of 100 beats per minute takes 2.4 seconds.
Also, note that the end of the performances (as found on
the CDs) is often played by slowing down and sustaining
the closing chord until it ‘dies out’.

length (secs.) start middle end
2.5 53.6% (127) 21.9% (52) 38.8% (92)
5.0 59.1% (140) 25.6%(61) 44.3% (105)
10.0 61.2% (145) 29.5% (70) 58.2% (138)
15.0 66.2% (157) 30.0% (71) 58.7% (139)
20.0 67.5% (160) 32.9% (78) 64.1% (152)
25.0 71.7% (170) 34.2% (81) 64.6% (153)
30.0 72.2% (171) 37.1% (88) 66.7% (158)

Table 1. Classification accuracy for finding the exact main
key in 237 piano sonatas for variable-length fragments
from 2.5 to 30 seconds at various locations.

exact 75.1% (178)
Rel. 6.8% (16)
V 1.3% (3)
IV 6.3% (15)
Par. 4.6% (11)
total 94.1%(223)

Table 2. Classification accuracy for finding the exact main
key in 237 complete piano sonatas. Confusions with the
relative, dominant (V), sub-dominant (IV) and the parallel
key are given. In the last row, the classification accuracy
is shown if we consider all these related keys as correct
keys.

In Tables 1 and 2, the results are shown in terms of per-
centage correct. If we consider the algorithm as reliable,
it is evident that most of the classical compositions can be
termed as monotonal. As shown in Table 1, analysing the
start and the end of a performance for at least a 25 second
fragment provides a sensible judgement of the main key
(i.e., 65-72% correct). The last five seconds of a classi-
cal piano performance provides a unreliable judgement of
the main key, as too little data on harmony are present due
to the last ‘dying out’ chord of most performances. Also,
the middle of a performance should not be used to extract
the main key since the composition might already have
gone through various key changes. As shown in Table 2,
to obtain the best possible judgement of the main key of
a performance with an accuracy of 75.1%, the complete
performance needs to be analysed.

The algorithm makes mistakes by confusing the exact
main key with its relative, dominant, sub-dominant or par-
allel key. As shown in Table 2, this is considerable (about
4-7%) for the relative, sub-dominant and parallel keys.
The cause of these key confusions needs to be sought in
the way in which the piano sonatas are composed. How-
ever, since these keys are all ‘friendly’ to each other, they
can all be considered as similar in particular music ap-
plications. Then, the classification accuracy amounts to
94.1%.



4. CONCLUSION

The present key extraction algorithm starts by computing
the chromagram from raw audio data of a musical frag-
ment. To this end, it extracts the likelihood of all possible
pitches in the range from A0 (27.5 Hz) to A6 (1760 Hz)
by computing harmonically compressed spectra in non-
overlapping time frames of 100 msecs. The likelihood of
all pitches are collected in a single octave and averaged for
the complete musical fragment to arrive at a chromagram.
The algorithm needs only minimum amount of computing
necessities; it runs in parallel while the system is playing
out music allowing online tracking of the harmonic pro-
gression in the music.

This chromagram is used in a correlative comparison
with the key profiles of all 24 Western musical keys.
These key profiles express what chromas are most impor-
tant (i.e., most stable) in a given key on a rating scale from
0 to 7. The key which profile demonstrates the highest cor-
relation with the provided chromagram is taken as the key
of the musical fragment under study.

The algorithm identifies correctly the exact main key
in 75.1% of the cases by analysing the complete CD
recording of piano sonatas. If we assume exact, relative,
dominant, sub-dominant and parallel keys as similar, it
achieves a 94.1% accuracy. We have no data on recordings
with other instrumentation or from other musical idioms.

The algorithmic performance seems to comply with hu-
man performance. Note that musically trained people can
identify the correct key in 75% of the cases, tough after
listening only to the first measure [3]. However, we do
not know to what extent the algorithm and humans make
similar mistakes. This is concern for further research.

Concluding, the following weak points of the current
algorithm need attention:

� The raw audio data are taken as is, whereas a pre-
processing stage might reveal fragments in a musi-
cal performance that contain key-relevant informa-
tion and fragments that do not. An check on har-
monisity and transients, for instance, may clearly
discern fragments with harmonic instruments car-
rying prime information on musical key from noisy,
percussive instruments.

� Music perceptive and cognitive factors that estab-
lish a musical key at a human listener can be fur-
ther integrated into the algorithm. Temporal, rhyth-
mic and musical harmonic factors of pitches are not
modelled, whereas it is known, for instance, that
the temporal order of pitches and the position of
pitches in a metrical organisation (e.g., the first beat,
strong accents) influence both the perception of a
tonal center (i.e., the tonic of the key).

� Music theoretical and compositional constructs are
not modelled in the algorithm. Composers use var-
ious key modulation techniques in which they sig-
nify how strong a new key will be established (i.e.,
Schenkerian analysis). For instance, a cadence in

root position and more than three chords from the
diatonic scale establish a strong (new) key in theo-
retical sense.
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