IML - MIR
(INTERMEDIATE MUSICAL LANGUAGE-
MUSIC INFORMATION RETRIEVAL)

USERS' MANUAL

T. HALL
P. H. PATRICK
J. SELLECK

JUNE 1972

The following is intended as a guide for anyone
interested in importing the I.NM.L.-N.I.R. system, But it
vould be best (perbaps even necessary) for anyone who
desires to import it to spend a fewv days at the Princeton
University Computer Center.

Data Available

Cards:
20 masses of Josquin. (Pully corrected (?))
FPragmenta Missarum and some 60 Motets.
(Uncorrected)

Tapes:

I.M.L. data tape. (Contains card images of 20
rasses)
M.I.R. data tages:-

(i) 20 masses each as a separate file

(ii) 20 masses combined into one file.

I.M.L.-M.I.R. system programs

(Time and core estimates are those required by the IBM
360/91 computer at Princeton. (8 bit byte, 4 byte word.))

(i) I.M.L. conversion program; approx 3500 cards, in PFortran
except for Hale Trotter'!s assembler I/0 routines. Requires
180K bytes of core, average running time for conversion of a
mass 0.5 to 1.0 minutes depending on the size of the mass.

(ii) M.I.R. subroutines (to which the user appends his own
specific program); approx. 1500 cards, in Portran except for
Hale Trotter's assembler I/0 routines. Core size (minimum
of 120K bytes) and running time dependent on the complexity
of the user program.

(iii) Miscellaneous updating programs.

v

At present, future development of the I.N.L. code and
conversion program is doubtful. The program is bulky and
cumbersome and it might be better to do any future coding in
a more widely used language (Ford-Columbia ?) and then write
a nev conversion program. (The coding, proofreading, and
correcting of data constitute a long tedious process full of
possibilities for minor errors, which when undetected cause

PR Y

much programming time ¢to be wasted. These difficulties
should be reduced by improved coding techniques and
eventually eliminated by optical-scanning devices.)

The M.I.R. subroutines, however, can be easily grafted
onto any system; they are independent of the intermediary
code, the only restriction is that the converted data be
packed onto the tape (or disk) in a specific format. It is
on the M.I.R. subroutines that much development can and
should be done. True, at the moment we are limited to the
music of Josquin, but our greatest need at present is the
development of our music-theoretical knowledge and abilities
to help us knov vhat questions to ask and hov ¢to interpret
the results. These techniques can be developed while we
await more data.

September 1972

I.!.L' - H.I.R
(Intermediate Musical Language -
Music Information Retrieval)

Users!'! Manual

T. Hall
P. H. Patrick
J. Selleck

June 1972

Forevord

A number of the features of this system would be
puzzling to anyone who did not know something of its
history.

The original idea for the vhole system was Michael
Kassler's, but many people have worked at it over the years,
The roles of the undersigned in the early stages were mainly
confined to encouraging a number of enthusiastic students in
their efforts to develop such a system - chiefly HNichael
Kassler, Tobias Robison, and Hubert Howe. We chose the body
of music to which it was first to be applied:- the Masses of
Josquin Desprez, to which we later decided to add the
Hotets*. Neither of us had any knovledge of computers or
programming at the outset, and we have up to the present
considered our function to be mainly that of making clear
the kind of question we should like the system to be able to
ansver, leaving it to the students, and 1later to John
Selleck, to devise the means by which the ansvers were to be -
arrived at. But in the long run, to get the maximum help
from the system, the scholar should doubtless be able to
write his own programs.,

The I.M.L. System

It vas clear at the outset that creating a code into
vhich musical notation could be translated for feeding into
the computer would be a shorter task than working out the
information retrieval system. Hubert Howe and Alexander N.
Jones created this code, and described it in I.M.L., an
Intermediary Musical Language (1964, mimeographed; out of
print) . It had tvo basic premises:

(1) that it need never deal with more than one note at
the same time on any single staff; and

(2) That it should be easy as possible to learn, for
anyone who could read music in the treble clef.

The first of these premises embodies a limitation which we

* At the time of writing ve have Masses 1 - 18 of the
Smijers Bdition fully corrected (?) and converted onto tape,
and MNasses 19 - 20 and most of the Motets coded but only
partially proofread and corrected,

were gquite willing to accept. It obviously simplified
coding, and it seemed sensible to us to see vwhat help the
computer could give us with a considerable but limited body
of music, which has a certain homogeneity of notation and
concerning which each of us had many questions to ask. The
second premise, or at any rate some of the conclusions that
vere drawn from it, now seems less well advised, and is
responsible for some of the faults of I.A.L, In practice,
the coding has always been done by music students, so such
requirements as that it should be possible to code
everything as if it were in treble clef have turned out to
be unnecessary, and other features of the language have
proved to have serious disadvantages, But before ve learned
these lessons wve set students to vork coding the Josquin
wvorks, and ve had some 1200 pages of music coded on
punch-cards long before we had a working system for
obtaining the information that we wanted to extract from
them.

Not all the key-punchers understood the Jones-Howe
instructions in exactly the same sense, and those
instructions, naturally enough, did not cover every
contingency that was to arise in the coding. To meet
unforeseen situations, ad hoc decisions vwere made by
individual key-punchers, the results of which later had to
be grafted into the system. Some key-punchers coded the
time-signature ¢ as C/; some as C-. Some were consistent in
where they left spaces (vhich the computer considered as
blank characters); others interpreted the instructions more
freely in this respect. So when the retrieval system vas
wvorked out - partially by Tobias Robison, for the I.B.N.
7094 computer, and described by him as he envisioned it in
Tobias D. Robison, "IML-MIR: A Data-Processing System for
the 2Analysis of Music", in Harald Heckmann {({Ed.),
Elektronische Datenverarbejtung in der Musikwissenschaft,
Regensburg, 1967, pp. 103-135; rewritten and completed in
Portran IV by John Selleck, with revisions by P. Howard
Patrick and Thomas Hall, in the form herein described -
provision vas made in it for interpreting the I.N.L. coding
as if many of these decisions could be made at the option of
the key-puncher, as indeed in the current version of I.AM.L.,
herein described, many can be. That is - rather than try to
make all the data uniform in these respects, MN.I.R. vwas
constructed so as to interpret the data correctly whichever
option had been used. But for anyone starting afresh to
keypunch music in I.M.L., we strongly recommend, to avoid
confusion in proofreading of the coded data, that wvherever
this manual offers optional ways of coding a single wvay be

adopted.

No one would assert that if we were beginning the
project today, with vhat we have learned in the meantime, we
would use a system as cumbersome and with as many likely
occasions for error as I.M.L. The system is here presented
in the form into which it has evolved. It vorks, and it is
presented for what it is worth, We expect that it will
continue to evolve, and we hope that its inconsistencies and
difficulties will be reduced.

The M.I.R. Systemx

The M.I.R. system performs the basic retrieval
operations with considerable agility. However, the dozen or
SO0 retrieval routines available to the user are only a
skeleton. The M.I.R. system only retrieves information;
what information should be retrieved, and how the results
should be interpreted are the major problems which face the
user, It consists of a few basic retrieval routines plus a
fev more that were worked out as parts of programs designed
to ansver specific questions but that may be useful for
other purposes as well.

The reader of this manual must knov Fortran IV: its
terms and procedures are not explained here. Portran IV was
chosen as the most videly used computer language, and the
one least dependent on a particular type of computer. Bvery
term or expression here typed all in capital 1letters is
explained either in this manual or in a Portran manual or
textbook. But of course every computer installation has its
own conventions, wvith which the user vill have to
familiarize himself in order to apply the I.8.L.-M.I.R.
system.

Levis Lockwood

Arthar Mendel

* It should be pointed out that the N.I.R. system is not
dependent on I.M.L. coded music. With some programming
expertise any form of coded music can be used as a data
source.

Page
Chapter 1: Intermediate Musical Language 1
Section and lyne 1
a. Verbal Symbols 2
KEYRORLS
1. TITLE 4
2., CCMPOSER, AUTHOR, PUBLISHER,
PLACE, EDITOR, KEYPUNCHER)
3. SUBTITLE 4
4., LYNE 4
5. TUOCK 5
6. UNTUCK 5
7. CLEF 5
8. TIME 6
9. RETINME 6
10. REDUCE 7
11. KEY 7
b. Non-verbal Symbols
1. Lyne- and measure- numbers 9
2, Staff-position 10
3. Accidentals 10
4, Durations 10
S. Register 1
6. Text-syllables 12
7. Triplets 13
8. Ties 13
9. Dynamics 14
10. Rests 15
11. Barlines 15
12. Ligatures and Permatas 16
13. End of input features 16
14, Sequencing cards 16
15. Character-sets 16
16. Tags 17
17. Spaces 17
Example of coding of music 19

Conversion process 22

Label Registers

Chapter II: M.I.R. Register Information

TYPE NFIL NSEC NREC

HEDBLK Registers

POSER TITLE SUBTIT AUTHOR

LISHER

LYNBLK
CLEF
KEYPC
ITSVNN,
TSNUN,
REPKEY
INSTRU
SIGKEY

NOTBLK
MEASNO
NOTECL
PRECAC
SUGGAC
STAFPO
DURAT
DOTIND
NUNMLYN
GRPNO
BARLIN
BRACK
SPECSHN
BESINT,
SYSINT,
ATINT,
DURINT,
DNC
TEXT
TIEIND

EDITOR PUNXER RANGER

Registers

ITSVDN
TSDEN

Registers
LYNENO NOTENO
REGSTR SEMITO

MESNUM, MESDEN

SYSNUM, SYSDEN
ATNUNM, ATDEN

DURNUM, DURDEN

Interval Registers

INTVL
INTDIR,
DINTVL,
DINDIR

INTREG, INTNOT
GENUS, DIOCT

Page
28

30

31

32
32

33
33

33

41
41
42
42

Chapter III: N.I.R. Subroutines

TOTITL

TOCOMP

TOSECT

TOSECN

TONEXT, TOLYNE, TOMEAS, TONOTE
TOCURN, TOREC
FUNCTIONs NOTE, ATTACK
PINDFD

FINDBK

FUNCTION FRACOM

FRALCD

FRACAD

FRASUB

PRAMPY

SPACER, INIT, SKIP, LINE
ABGS

DIABS

UNPACK

PREP

CAL

NGENU

NUNPIC

GET

SEARCPF

SEARCB

SRCREC

READFD

READBK -

TPGET

Page

Chapter 1IV: Sample user program 60
Sample output 72
Suggestions for M.I.R. users 75

Appendix 1A: The Correction process

Appendix 1B: Coding of Triplets, etc., in I.N.L.

Appendix 2A: I.M.L. Conversion program modules

Appendix 2B: Messages in the Conversion program

Appendix 2C: Updating M.I.R. tapes

Appendix 3A: Record Pormat for M.I.R. program input

Appendix 3B: Messages in the M,I.R. program subprograms

Appendix 4: Hale Trotter I/O routines

Index

Chapter 1

Intermediate Musical Language

The 1Intermediate Musical Language(I.M.L.), designed
originally by Jones and Howe in 1964, has undergone numerous
corrections and additions since its first formulation for
the 7094 system. Most of,the changes, however, were not
caused by the change of computers, but arose from working
with the I.M.L. - M.I.R. (Music 1Information Retrieval)
system in general, The 1lanquage is not as simple as
conceived originally and care is taken here to state
explicitly all the rules which must be followed without
deviation to code music in an I.M.L. version which will be
correctly interpreted by computer programs. Por purposes of
reference, some statements will be repeated many times
vherever they are applicable, The present description
concerns., the language as it now (1972) exists for the 360
computer programs,

As mentioned in a previous writing by Jones and Howe,
I.M.L. is not a language for handling simultaneities on a
single staff. It can consider only a set of monodic voices,
and is particularly suitable for vocal polyphony of the
Middle Ages and Renaissance. It was designed, in fact, with
only this music in mind. With some effort it can be made to
function in a limited way for other music.

Section and Lyne

In this manual, the word section means one of the five
main divisions of the mass (Kyrie, Gloria, Credo, Sanctus,
Agnus) or one of the parts of a motet (Prima Pars, Secunda
Pars, etc.), while sub-section means any portion of a
section that 1is separated from another portion of the same
section by a double bar, {e.g., Christe, Qui sedes,
Confiteor, In nomine, Agnus 2). :

The term lyne is more or less synonymous with "part®" or
"voice", but each lyne is identified by order-number rather
than by name. The order is from the highest to the 1lovest
in a system of music, the terms "highest" and "lowest"
referring only to the position in the graphic representation
on the page, not necessarily to relative pitch., Lyne 1 in
one section of a composition may be the SUPERIUS, while in
another section lyne 1 may be the ALTUS, each being simply
the top part of the rusic being encoded.

Musical notation wvhen encoded in I.M.L. consists of a
string of symbolic data typed on consecutive punch-cards,
There are specialized symbols and symbol-groups of two
kinds: program-analysable and non-program-analysable.

Non-program-analysable comments are included merely for
the reader's convenience to explain some aspect of the
coding. They must be enclosed in single guotation-marks.

Program-analysatle comments are of two classes: verbal
symbols and non-verbal symbols,

a. Verbal Symbols

All such elements must, like non-program-analysable
comments, be enclosed in single quotation-marks.
Immediately following the opening quotation-mark comes an
equal-sign, and immediately following that a specific
keyword, which identifies the type of information contained.
A single space (tlank character) must occur after the
keyword, and usually no spaces can occur in the information
part of the comment. Excepticns to this will be noted, In
coding for the computer, spaces must be thought of as blank
characters, since they are sometimes required, sometimes
prohibited, and sometimes optional. To differentiate an
optional space from a required space, the latter is always
represented in this manual by the 1letter b. 1In actual
coding, a space (blank character) is used; no lower-case
letters are used in I.M.L.

In the keypunching of the Masses and Motets of Josquin
des Prez, a convention of punching only in the first 70 card
columns vwas maintained for a while; then some were punched
up to column 72. EBither course may be taken now, but the
former is preferable; if columns 71 and 72 are keypunched
they must not be used for a significant blank character in a
program-analysable comment. Column 72 on one card is
directly succeeded by column 1 on the next card, and except
as regards the prohibition just mentioned they may be
thought of as members of a continuous series. Further
important exceptions are described in be1 and b, 13 below.
It is strongly recommended that a new card begin only vwhere
blank characters are optional.

Except vhere otherwise indicated, keywords refer to
everything that follows (i.e., their application holds over
from one sub-section to the next unless they are replaced by

other keyvords). In the reformatted printout produced by
the conversion process (see Chapter 1II), each keywvord
appears on a separate line. It is a good idea to punch them
this vay also, i.e., one comment per card.

KEYWORDS

This 1is the keyword which precedes a single
space and the title of the composition in question
(wvhich may include spaces)* terminated by a !
character; e.qg.:

"=TITLEbMISSA GAUDEAMUS!

The actual title (after the keyword) can be at
most 44 characters long.

2. COMPOSER (32 characters), AUTHOR (32 characters),
PUBLISHER (24 characters), PLACE (16 characters),

EDITOR (24 characters), and KEYPUNCHER (28 characters),
are other keywords for comments similar to TITLE
and SUBTITLE. Spaces may occur in the

inforrational part of any of these comments. *#

This keyword indicates that the name of a
sub-section of a composition will follow (after an
intervening space), e.g.:

'=SUBTITLEbKYRIE 1!

the actual subtitle (after the keyword) can be
only 24 characters long, Spaces may occur in the
informational part of this comment.
4. LYNE: -

The names of all the lynes in the sub-section
to be encoded must be listed after the keyword
LYNE plus a single space, as in the following
example:

'=LYNED1-VIOLIND2-VIOLAL3-CELLO®

*X complete statement of where space is required, where not
permitted, and vhere optional appears at the end of this

chapter,
% Provision has been made for additional information if
there is reason to include it; see APPENDIX 33, p .

(Page-numbers have been left blank for the user to fill in,
since vhenever any revision of this manual is made the
Page-numbers may change.)

As regards format, the above example must be
followed; the instrument- (or voice-) names may of
course vary. No spaces are allowed in the
lyne-name, which can be a maximum of 12
characters, (If a space wvwere key-punched, as for
example in QUINTA VOX the second word would be
omitted in the conversion.) Between the end of a
lyne-name and the number of the next lyne, at
least one space must occur, There must be a
hyphen between the lyne-number and the lyne-name.

5. TUCK:
This keyword occurs alone in the comment:
¢=TUCK"!

to indicate that the encoding of the
staff-positions of the notes will be done using
the diatonic letter-names indicated by the actual
clef in the music. Otherwvise, the coding of all
lynes is done as if all clefs were treble-clefs
(see b.2 below, p).

6. OUNTUCK:

| This keyword alone in the comment:

1 *=NTUCK®

|

| cancels the effect of the TUCK comment. After it,

| the notes must be keypunched as if they were in

| the treble-clef. '

Keywords 7-11 differ from the preceding in that each
governs only the particular 1lyne with which it is
associated.

7. CLEP:

This is the keyword for a comment referring
to the clef of a rparticular 1lyne being coded.
After an intervening space, the 1letter G for
treble clef; Cx for all C-clefs, wvhere x stands
for the number of the line of the staff (counting
from the lowest up) which is middle-C in the
particular clef (e.g. soprano clef would be coded
"=CLEFbC1'); F or FU4 for bass clef; P3 for
baritone clef; PS5 for contra-bass clef; UG for

treble clef with 8ve-higher meaning; LG for treble
clef with 8ve-lovwer meaning; and G1 for
French-violin-clef -~ are the only possible
indications, No spaces are allowed except one
after the keyword.

This is the keyword for a comment referring
to the time-signature of the 1lyne being coded,
After a single intervening space, the
time-signature, if in "fractional" form, is coded
as the ‘'"numerator" followed by a slash (/)
followed by the "denominator", €.q.:

'=TIMEbU/ U4+

if the time-signature is in some other form, i.e.
as a single numeral, a letter, or a combination of
letter(s) and numeral(s), it must be enclosed
vithin parentheses. Without a RETINE comment (see
9 below), such time-signatures will have no
meaning for the conversion program with the
exception of C, C-, or C/ (note the two equally
permissible vays of LCepresenting qT, some
key-punchers having used one vay and some the
other), all of which are interpreted as being
equal to 2/1, unless specified differently by the
PETIME comment, No spaces are allowed except
after the keyword.

This keyword followved by a space indicates
information is to be given as to the value of some
following time-signature, that time-signature
being one enclosed within parentheses, as
mentioned above. The comment has a form like the
following example:

'"=RETIMEb(C-) = 1/1?

This will cause C- (but not C/) to be interpreted
as meaning 1/1 instead of 2/1, or any other
previous value for this particular time-signatare.
Besides a single space after the keyword, which
must occur, any number of blank characters on
either side of the second = symbol may or may not
be included. (Note that RETIME is not actually a
specific-program-analysable comment, but rather a

10.

11.

=
i<

general-program-analysable comment, Its effect is
not restricted to a particular lyne, but defines
the meaning of a time-signature which can appear
in any lyne. It was included here since its
description is better understood after reading the
specifications for the TIME comment.)

In the process of encoding I.M.L., one may
run across cases of two different meters in
different places where the measures in both cases
are meant to be the same length. This may occur
as tvo different meters in different lynes at the
same time, or between successive passages in a
composition. In the former case always, and in
the latter case at the discretion of the
keypuncher, or in accordance with his
instructions, a REDUCE comment is used to indicate
the t'true!' value of the durations of the notes in
one meter in relation to those in other meters.
E.eg.: '

'=REDUCEb1-3/2"

would be the indication signifying that in lyne 1

the durational values of all the notes are to be

interpreted as two-thirds of their written value,
The comment:

!'=REDUCEb1-2/3!

nullifies the effect of the first comment. No
spaces are allowved in REDUCE comments except the
required one.

This keyword indicates that information about
'key-signature!, or the permanent accidentals for
a lyne of music will follovw. Two methods are
employed in indicating the 'key', or what is to be
considered the 'key!, of a given lyne of music
from some point on in a composition.

The form:
'=KEYbxyyYYY'

is used where x is the tonic of the major key

vhich in tonal music would be indicated by the
'key-signature'. The y's stand for PLAT or SHARP,
but since the computer will disregard all except
the first letter of each of these vwords,
abbreviation to P or S 1is optional. E-g., C,
EPLAT, CSHARP, BF, FS would all be valid
key-signature representations,*%*

The "key-signature” may also be represented
by a 1list of the actual sharps and/or flats
involved. E.g.:

*=KEYb (AS,BT,GS)!

vhere the (hypothetical) signature consists of
sharps on A and G and a flat on B.** They must be
enclosed in parentheses and separated by commas.

No spaces are allowed in either form of the
comment. The absence of any initial KEY comment
for a 1lyne of music means that "C-major" will be
assumed, i.e. no accidentals, A Wkey-signature®™
of C-major must be stated, hovever, if it is to
replace a previous indication in the 1lyne which
was not C-major.

**x It is only in the representation of *'key-signatures' that
'flat! is represented by F; everywhere else it is
represented by T.

b. Notational

1.

et

features indicated by non-verbal symbols

Lyne- and measure- numbers:

u

Always the first indication within any
representation of a staff, these are indicated as
numbers enclosed within dollar-signs in the
following manner:

fméns
vhere m is a number {(maximum 2 digits) assigned to
the 1lyne (see a,l atove) and n is the
measure-number (maximum 3 digits). The first

measure in the top part of a score would be
indicated as $13$1%. The numbering of the measures
in any subsequent sub-section may continue the
series of the previous sub-section or may begin
with 1, at the key-puncher's option.

Spaces are allowed between the $ symbols and
the numbers they enclose, but not between the
digits (e.qg. $351 0 2 §% is incorrect, but
$ 1 3% 345 $ is allowed). The strings of symbols
for this indication must appear on a single card,
i.e., they must not be divided into two parts,
each part being on a different card. It is a good
idea to keypunch this feature alone at the
beginning of a new card. This will facilitate
location of the particular staff on a printout of
the cards.

Whenever a comment referring to clef,
time-signature or "key-signature™ occurs in the
course of a lyne, the measure in which it occurs
must be treated as if it were at the beginning of
a new system, even if this is not the case in the
printed music. The 1lyne must be ended at this
point with an end-of-staff barline (see b.11
p) and a nev mn$ indication followed by the
comment indicating the change must precede the
code for the remaining notes in the staff. I.e.,
no staff encoded in I.M.L. can contain internal
changes of clef, "key-signature", or
time-signature. And if such a change occurs in
the score, arbitrary division-points must be made
in the I. M. L. coding. All 1lynes of a
sub-section may be broken at the same point, but
this is not necessary. That the notes in any one

10

lyne be in order is all that is required,

2. Staff-position:
Staff-position in I.M.L. is indicated by the
letter-names of the notes:

ABCDETFand 6

For those not thoroughly familiar with other
clefs, in order to facilitate keypunching, all
staves are coded as if they Mere written in the
treble clef. (But See a.5 and a,6 above
concerning TOUCK and UNTUCK conventions.,) A rest
is indicated by the letter R (see b.10 below).

3. Accidentals:
To indicate an accidental, one of the
following characters is used: '

N for natural

S for sharp

SS for double~sharp

T for flat

TT for double-flat

NS for natural and sharp
NT for natural and flat

In the 16th-century music for which this language
was originally designed, the situation is often
encountered in which an editor has suggested that
certain notes receive accidentals vhich are not
indicated in the original sources of the work.
These are usually placed above the note which they
govern. Such accidentals are indicated in I.M.L.
by enclosing the characters N for natural, S for
sharp, or T for flat (only these indications are
possible) within parentheses. The specification
of an accidental must immediately follow the
symbol for the staff position of the note in
question.

4. Duration

" Dpurations are indicated by numbers which are
shown in the following table of equivalents*:

*In the folloving discussion, the word note is oused to
include rests. See 10 below concerning the durations of

11

Double-breve 111
Breve 11
Whole-note 1
Half-note 2
Quarter-note U
Eighth-note 8
16Th-note 16
32Nd-note 32
64Th-note 64
128Th~note 128
Grace-note 0

5. Register
The indication of the register to which a
note belongs is governed by the following set of
conventions:

(a) The normal register for the treble-clef, or
any clef whose notes are being interpreted in
UNTUCK mode, is defined as extending from the
first line to the fourth 1line of the staff
(first line being the bottom 1line).

(b) The indication U 1is placed immediately
before the staff position of a note in the
register one octave above the normal register,
or above the register of the immediately
preceding note, UU 1is coded for two octaves
above the previous register; UUUO, for three
octaves, etc, L 1is placed similarly if the
register of the current note is one octave lower
than the previous register; LL if two octaves,

etc.

(c) The register of each note is governed by
that of the preceding note, unless there are
indications (some L's or U's) to the contrary.

rests., Dots, which indicate that the duration of a note is
to be extended by half the value indicated by the
immediately preceding symbol (i.e., any number in the
right-hand column above, or dot), are represented in I.M.L.
by periods which follow one of the numbers above, The
indication of the duration of the note must follow that of
its staff-position and accidentals (if any). More than one
dot for a note would be represented by as many periods.

12

Once the indication U appears before a note,
that register now governs all successive notes
in the same 1lyne until an end of staff is
reached, or until it is cancelled by an L, as it
must be when a change to the next lower register
occurs. That 1is, except at the beginning of a
staff, where the normal register is assumed, the
indications U and L are relative to the register
of what has immediately preceded. so if, for
example, a lyne rises one note above the normal
register (indicated by U before the letter-name)
and then returns within the normal register,
this must be indicated by an L.

(d) At the beginning of any staff (real or
encoded as such in I.M.L. because of a change of
clef or signature) the normal register of
vhatever clef is in force for the 1lyne is
assumed, jrrespective of the register of the
immediately preceding note.

Normal registers for clefs which are read
according to the TUCK convention are as follows:

(i) G-clefs -- first line to fourth line

(ii) C-clefs -- whatever 1line represents
middle~C to the line representing the first B
above. (This has the effect of putting most of
the notes in the tenor clef below the normal
register.)

(iii) P-clefs -- from the space representing
the C below middle~C to the space representing
the B just below middle-C.

These are coded after the duration
indication, and are represented in I.M.L. by any
string of alphameric characters except commas,
enclosed by commas. The comma itself, when it
occurs in the text, is replaced by the + symbol.
Italics are indicated by the number 8 placed
before each syllable, except when syllable are
connected by hyphens in which case only the first
syllable need be preceded by the character 8. The
8 may be followved by a space, but need not be,

7.

13

Triplets:,

Triplets are indicated in I.M.L. by a +
symbol followed by a 3 in parentheses. The
triplet group extends from the note immediately
after the +(3) to the note just before a solitary
+ symbol. (Remember that the word note includes
the meaning Mrest",) The +(3) comes at the
beginning of all the information about the first
note with no spaces intervening; the + indication
comes just after the last note with no spaces
intervening. A note-symbol-group* containing the
+ indicating the beginning or the end of a
triplet-group must not include any blank
characters, and must be separated from adjacent
note-symbol-groups by at least one space.

This feature of I.M.L. is translated by the
conversion program into a proportional reduction
in the durational values of the notes concerned.
I.M.L. contains provisions for other groups of
notes which subdivide metric values by a number
different from what would be normal, as well as
for nested groups, but since they are not
applicable to music around 1500 they are not
described here. (See Appendix 1B)

The symbol which is used to indicate the
beginning or the end of a tie is *. An asterisk
representing a tie is always the very first or the
very last indication in the representation of the
characteristics of a particular note, depending on
vhether it stands for the beginning of a tie or
for the end. If a triplet-indication occurs on
the same note as that for a tie, the information
for the tie precedes that for the triplet at the
beginning of the note, and follows it at the end.

There must be ro intervening spaces in the
note-symbol-group containing asterisks, and there
must be at least one space separating a
note-symbol-group containing the tie indication
from the groups on either side. This space is the

*

Ioeo'

the group of all symbols pertaining to a single

note, together with its text, if any, and any indicators of
a fermata, ligature, tie, triplet and/or tag.

14

only way to distinguish asterisks coming at the
beginning of a note-symbol-group from those coming
at the end of the previous note-symbol-group.

In the Smijers edition of the works of
Josquin there sometimes occur "suggested" ties,
which are indicated by a broken line. These can
be coded in I.M.L. by the use of parentheses
around each asterisk involved. (If the maltiple
asterisks method of coding is employed (see next
paragraph), the parentheses would surround a group
of asterisks).

For example:

Insert 1

e Ty)

A Ll ML

Would be coded as:

(*)A11,A,/%¥211 (%) /A1*bG1, MEN, /

The fact that a note is connected by ties to
both the preceding and following notes is
indicated by asterisks at both the beginning and
the end of the group of symbols for that note's
representation in I.M.L. It 1is possible to
distinguish which tie is which by the use of
multiple asterisks. This is not necessary, and
makes no alteration in the interpretation of what
is actually going on. For example, the above
passage could be represented as:

(*)2A11,A,/%*A11 (*) /A1**bG1,4EN, /

9. Dynamics:

No provision has yet been made for the
inclusion of dynamics, accents, and other
expressive indications except as non-analysable
comments, If they occur, the note-symbol- group
at which they are placed should be followed by the
symbol =, this followed by the symbol for the
expressive indication, and this in turn followed

by another equal-sign,

15

A rest is indicated in I.M.L. by the letter R
folloved by a number which indicates the duration
(see b.4 above). Other indications are possible,
such as those for triplets. Note that very often
in the Smijers edition, for example, a breve rest
is encountered which 1indicates a rest for an
entire measure in 3/1 time. The rest is undotted,
even though a note cccupying a vhole measure would
be dotted. Such a rest is represented by R11. 1
single rest occupying an entire measure is alwvays
interpreted as having the duration of the wvhole
measure. (Therefore a triple breve rest when
encountered can be coded as dotted double breve,
even though in the musical notation it does not
have a dot.)

There 1is at present no method in I.M.L. for
indicating in abbreviated form the occurrence of
several vwvhole measures of rest in succession. 1If
twenty measures of breve rest are encountered,
each measure must be coded individually.

11. Barlines, end-of-staff karlines, and end-of-subsection
barlines:

A barline is represented in I.M.,L. by the
character S The end-of-staff barline is
indicated by two slashes in succession, The
end-of-sub-section barline, which 1is usually a
double-barline in the music, 1is represented by
three slashes in succession. (Spaces are
optional).

The comment:
1=FPINALDMOVEMENT' or '=FINALbDSUB-SECTION®

will cause the normal three slashes at the end of
a sub-section to be considered as four,
representing the end of a complete section (of a
Mass, say) . This comment should appear
immediately preceding the triple-slash of 1lyne 1
(only; not needed in other 1lynes).

12. Ligatures and Fermatas:
For a 1ligature, the following indication is

used:

16

'$BRY!?

vhere x indicates the number of notes connected by
the bracket indicating the 1ligature (tied notes
being counted as one note).

Por a fermata, the indication
1$SPERM!?

is placed before the note-syrtol-group which it
governs, and before the bracket if any. No spaces
are allowed in either "comment", but if both occur
they should be separated by a space, and they
should be similarly separated from the
note-symbol-group which they precede.

13. End of input features:
The last card in the input deck for a single
composition consists of $$$$$$ in the first 6
columns, to signify that the information about the
composition has been completed. The last card in
the whole input must have FILEDEND, beginning in
column 1 of the punch-card.

14. PSequencing” the cards:

All cards of I.M.L. input must be "sequenced"
(i.e., given serial numbers) in columns 73 to 80,
including the card with $33%38. Por one
composition each sequence number must be higher
than the preceding. It is a good idea to use
multiples of at least 10 when sequencing the input
cards to allow for later insertions. The sequence
numbers in any individual composition are
completely independent of those of any other.

15. Character-sets:
There are several characters on the 026
keypunch (used to keypunch most of the data with
7094 computer in mind) which have different values
when their punches are read on the 360 computer.
The following characters if keypunched on the 026:

() = ' + become respectively
% <% @ &§ vhen read by the 360

but they will be interpreted by the 360 programs

17

as the former. E.g. a ‘'=TIMEb(C-)' comment
keypunched on an 026 will appear, if the holes in
the card are interpreted on the 029 (i.e., printed
on the card), as ®TIMEb%C-<@, but either form will
be correctly interpreted as '=TINMNEb(C-)' by the
programs designed to convert the I.M.L. data into
material for information-retrieval purposes,

16. Tags:

A colon (¢, or any number of successive
colons, occurring immediately before the diatonic
letter in a note-symbol-group will indicate that
this note is 'tagged' for some purpose decided by
the user. Different numbers of colons may be
given different meanings, e.g. : equals
non-harmonic tone, : : equals accented syllable,
: ¢ : equals both, etc.

To sum up the circumstances under which
spaces may or may not occur: '

Every program-analysable comment has a single
space after the keyword.

Program-analysable comments given in a.1-3
may have internal spaces in the informational
content of each comment,

There must be at least one space.before and
after e€ach LYNE comment (a.l4), but the
symbol-group for lyne-number and -name (e.g.,
1-SUPERIUS) must have no internal spaces.

Comments a.5 and a,6 must have no internal
spaces in their informational content.

Comments a.7 and a.8 must have no spaces
except the required one.

The RETIME comrent (a.9) may have spaces on
either side of the second = symbol.

Comments a.10 and a.11 must have no spaces
except the required one,

mn$ indications may have internal spaces,
except between the digits constituting a lyne- or

18

measure-number. The symbol-group for a measure
alone (n) must have no internal spaces.

There should be at least one space separating
individual note-syrbol-groups from each other,
this condition 1is not necessary (except for
triplet and tie indications) but helps to make
I.M.L. ouput easier to read, but
note-symbol-groups should contain no internal
spaces and should not be split between two cards.

For text (b.6) a space 1is optional betveen
the 8 and the syllable that follows it. If any
spaces are coded in the text that goes with one
note, they will be automatically deleted.

There must be at least one space separating a
note-symbol-group containing the triplet (b.7)
indication from the groups on either side. But no
spaces must separate the symbol +(3) from the
first note of the triplet group, or the last note
of the triplet group from the + that follows it.

There must be at least one space separating a

note-symbol-group containing the tie (b.8)
indication from the groups on either side. But
there must be no spaces within the

note-symbol-group containing asterisks.

Spaces before, after, and betwveen bar-line
symbols (b.11), spaces are optional.

Ligature and fermata (b.12) comments should
be separated by a space from each other (if both
occur) and each should be separated by a space
from the note-symbol-group it precedes. Neither
comment can contain internal spaces.

$$$$%% and FILEbBEND indications (b.13) must
contain no internal spaces, must always begin in
column 1 of the punched card, and must be the only
inforrmation on the card.

19

Insert 2

|

v . N ’ " 0 ﬁ N o .H . . .
:] e | . dllll| 8 HEBIE] ML IERE a/m
i) ’ H . . i 4l =
N ! M . Mn ’ [l Hil e b 4. B, - u\xfl ¥
4 I . . 4
- . i s dlill s 8 ¥ TR| = (s g% NHE (I .
iy L: ' ’ “ 1 ! N : .M] .) ' o . { .]
| e [l I I _ i IERLIE
' , WY g |nd ‘ H ¢« S s - ' '
A< ' ' ' ' sHy . ' Staf .
L -
| i &uuf il i Y ald W, ||d T B [
| ' s «) : Mig all e, S . . .
T U . o 44 ' . @y '
: : : SR i ERIIIE L U+
i il : aill 8 a1l N in B Mf $
Ans 4 2 &JM F m 0 fn 1" ' ' N) ' ; (1l ™ ki L HUR
! HH s ' ol ' ' i Mg +H ' ﬂ : 4 I
,b M N2 i Ul il : il i ua;u L il Rl RIS R, Rlle
- - - m . 1T M M 3 il Sl HN S 3 . - o
an LRI - i, L , ; : (ﬁ il ah m s LY TR ML
’ > 1 1 $] v '
. 0 f 1 r.ir “ : v d M.. NI H
i A . f ' . (- H o (N IR Rl
m . q . I N . 1K o« 1§] Y ,
. 1 g lelil £ IS ' 1 1R . IR oL L 2 e QL] e i E A
18 \ il . i) 2 m | ‘ | o ﬂ i i
N ERLE ' 9] ' Hl| 2 [if dill e | CHlE e .
" ° LI Uil = ' n oL m “. 111N m i - H M al] ' m ' P
; ; .r . Al 8 ' | 2 ¢ . i m e
2 n -1 . ' qil * » . \ i Hlli e Ul e '
= a p] . . i I I \ , [m . .m M s | _Jvrl ...rA . L— ' LA
) g s ! 1 ’ " 0 T 18 1
A8 ‘ . HERC T R il N i . i il < Ml HE
\ Mt) © ’ , M { N |18 L.18 M s
e alfl g . . 2 = fhin ol MR (e
\ = . dll g Il 1 e I |5 fllls (ML Bl
) il s 1t 5] T 1 . . 5
“ o. L I | ') “.}) .- _:.. . , . mn Ty ! WL , CIR-RL R N2
I = g I 3 1K , i e N N ;) , '
- . ' " : : H m m] H HE MY, n: A Nlle NIH.= 1T b |
= 2 ' i L Il : " Aﬁ LI ()
. a. ﬁ i m 9 .M | L ' i - ' q - f L -1 : 0 _ L.ja M y '
__ 2 ' " L £y ¢) | N R 0
bt m P e] . . A< B! R | m . uﬁrf 2 |8l § o
o | s it o g lidl ¢ % s I g il s ot 3 bl el
m o s u ‘. ® < Nl » - £ IR 1 . 8 21l . M- y N q S =) NER RS o 4
SN | T s | Ll 1 I y by
Su «< m Yo m e N\ i ya /J iy Ve N\ @U |r. : ﬁm My A 4 4

20

To illustrate some of the features of the transcription
of a piece of music into I.M.l., an example of music given
in insert 2 from the Hosanna of the Missa Ave Maris Stella
will be discussed at some length. It contains many features
that one would run across in coding this type of music.

The first step in the coding of the example, or of any
composition, 1is to make all the general program-analysable
comments, referring to the entire sub-section. These
include the comments mentioned under a.1 through a.é6. At
least one of the comments mentioned in a.1 through 3 must
appear. The LYNE comment must appear. Comments a.,1 through
3 can appear only at the beginning of a sub-section, but a.4
through 6§ can appear elsewhere too.

The very first statements for the coding of insert 2
would be:

'=SUBTITLEbHOSANNA?'
'=LYNEb1-SUPERIUSb2-ALTUSb3-TENORbU4-BASSUS'
*MEASURE 82 HAS BEEN RENUMBERED AS 1 HERE!

$the names of all the 1lynes do not have to be given
together, but lyne 1 must be defined in LYNE comment before
the occurrence of material from that 1line in a mn$
character string. The code for the first lyne of music is:

$1%1%

'=CLEFbG' '=TIMEb(C-)' "=KEYbF!*

R11/ R1b*B1,H0,/ B2*bC2 D1,SAN,/ G11,NA,/
R1L*C1/ C2*bB4 AUb%*A1//

When there are no sharps or flats in the signature, no KEY
comment is necessary, unless to <cancel a previous KEY
comment. (Note that the note-symbol-groups that contain
tie-indications must include no blank characters and must be
separated from adjacent note-symbol-groups by at least one
space.)

Lyne 2, measure 21 (102 in the score) would be coded:

$2%218%

OF1 R2 F2/ LD2., B4b*R1/ B2%bG2 G1//
$232u48% ,

*=REDUCEb2-3/2' '=TIMEb3-1!

c1 P1 C1/ DT11 C1/ C(T)1 C11//
$2%27%

' =REDUCEb2-2/3' '=TIMEb(C/)"

21

A2. BU C2b*F2//

Concerning the interruptions at mm.23-24 and 26-27, see b.1
above. The REDUCE statement is required since other lynes
at this point are in ¢ meter.

The above was coded using the treble-clef convention.
Continuation of the second lyne (m.109 in the score) using
the TUCK convention would appear as follows (note the
succession of triplets):

$2328%

LG4*bA4 B4 UCU D2 LG2/ A2 UA2. G4 E2/
F1. LB2/b+(3)B2, UC4 D2 LG2 E2 UC2/
D2 E2 F2 G2 D2 E2+/ F2 C1 F2//

The triplet-indication need not be repeated for each
immediately succeeding occurrence unless desired.

The double-asterisk method of coding ties is
illustrated in lyne 3, measure 7 (m.88 in the score):

$3%7%
'$BR2'bB11/ C11/ UE11/
'*$BR2'DLD1T UB1/ *P11/ *%xF11%/ %F11%%//

Note that ligature-comments come before the note-symbol-
groups for the notes they govern.

The final system of the Hosanna, lyne 4, could appear
as follows (in the TUCK convention):

343348

A2 D2, EY F2/ G2 F2. G4 A2/ D1 E2 F2/
G2 F2. G4 A2/ D1 E2., PU/ *G11/ Gli*///
'HOSANNA ENDS HERE!

Spaces can occur between the elements of a note-symbol-group
if that group does not involve ties or triplets. No space
is required before the first asterisk (or double asterisk,
or plus-sign) or after the second if a barline occurs there.
Unanalysable comments can be placed anywhere they are
appropriate.

22

The Conversion Process

Roughly explained, what happens is that the I.M.L. code
indicates to the <conversion program what the values of
certain predefined categories, termed registers (the
contents of which will be explained in Chapter II), are to
be. Whenever a complete set of these for one note has been
generated, it 1is written onto a tape which will be used as
input data for the user's M.I.R. program. The tape can
contain five different kinds of records. A record is all
the information put onto the tape by any one command in the
conversion to write onto the tape. The records are labelled
HEDBLK, LYNBLK, NOTBLK, TALBLK and ENDBLK (N.B., these names
are a carry-over from the 7094 computer
6-character-per-computer-word situation; the 360 allows only
4 characters par word and the actual 1labels for these
records are discussed under the MIR register TYPE in Chapter
11).

HEDBLK information consists of material taken literally
from the program-analysable comments 1listed under a.1-3,
Because each record on the tape has been 1limited to 40
computer-words, and because the information for HEDBLK would
sometimes occupy more space than this, HEDBLK consists of
two records (80 computer-words).

LYNBLK information consists of material extracted or
derived from LYNE, CL®P, KEY, TIME, and RETIME comments.

note-symbol-groups as well as LYNE and PINALbSUB-SECTICN
comments, '$FERM' and '3BRx!'. Attack-times are calculated
not only from information about duration given in the
note-symbol-groups but also from information in the
comments: TIME, RETIME, and REDUCE. The value of various
registers containing pitch-information is determined by the
value of the staff-position and the comments: KEY, CLEF,
TUCK and UNTUCK.

TALBLK signals the end of a composition. ENDBLK
signals the end of all compositions on a tape.

All possible information about a particular note in a
score 1s stored in one of the three types of records:
HEDBLK, LYNBLK and NOTBLK. The order of the sequence is:

23

HEDBLK1 (2 records) ILYNBLK!1 NOTBLK?1 -~- NOTBLKn LYNBLK1 LYNBLK2
NOTBLK1 --- NOTBIKn LYNBLK2 LYNBLK3 . . . LYNBLKn HEDBLK1 (2 records

This 1is the arrangement for a sub-section of music. Note
that the HEDBLKs for the section come at the very beginning
and end. The LYNBLK for a particular lyne is repeated after
all the NOTBLKs to which it belongs. This makes it possible
to scan backwards and alwvays have the correct HEDBLK and
LYNBLK information. The last HEDBLK record for a
composition 1is succeeded by a TALBLK record. The last
composition on a tape file is followed by an ENDBLK record.

There are three programs associated ¥vith the
"conversion process” - tvo to produce printout for
diagnostic purposes, and one to put the registers calculated
onto the tape. Each program analyses the I.M.L, data fed
into it.

The first of these is called the Reformatting Program.
It checks to see if some of the syntactical requirements of
I.M.L. have been fulfilled, and also checks to see that
information is not given which 1is clearly out of the
question, such as clef-designations which are not allowed,
or undefined symbolic time-signatures. It also checks to
make sure that each measure of music lasts as long as it is
supposed to, given the prevailing time-signature. Error
messages of various kinds (see APPENDIX 2B p) are
printed out if errors are detected.

The Peformatting Program produces a "reformatted"
printout of the I.M.L. input which is used in proofreading.
Example 1 (below) is such a printout for the example given
in the first chapter. Here the information is reorganized
visually to aid in proofreading by multiple-pass scanning.
The top 1line of the reformatted printout contains triplet,
tie, LYNBLK, bracket, and fermata information, as well as
RETIME and REDUCE comments. All durations are given in the
second line. A1l diatonic 1letter names, changes of
register, and accidentals are given in the third line. The
text accompanying the notes is given in the 4th line. Each
gJeneral program-analyzable comment appears on a line by
itself, Whenever a RETIME comment occurs, all
time-signatures defined up to that point and their values
are printed out for compariscn. The registers in which
symbolic signatures and their numerical values have been
stored are called respectively RETSG and NRET,. Lyne. and
measure indications (1m$) will appear at the beginning of
the first line of the reformatted printout. Measure-number

24

indications alone (if keypunched) appear above line one,

In the printout, a set of four or five print lines
corresponds wherever fpossible to a single staff of the score
with its accompanying text. If the staff is too 1long for
the printout page-width,it is continued on a succeeding set
of lines, but the beginning of a staff is always imitated by
the beginning of a set of lines. (See Example 1.)

The second form of the conversion process is called the
register printout gprggram. The values of all ©NOTBLK and
LYNBLK registers are printed for every note as calculated by
the program, Some of the registers have different names in
the I.M.L. and #M.I.R. programs., Since the user will
normally use the M.I.R. names this should not cause any
difficulty. Below is a list of the different names.

I.N.L. M.I.R.
LYNBLK
ICLEPH CLEF
XNSTRU INSTRU
NOTBLK
NREGCL REGSTR, REGCL
NSEMIT SEMITO
NPRECA PRECAC
NSUGGA SUGGAC
NSTAFP STAFPPO
NDUERAT DURAT
NDOTND DOTIND
MAXLYN NUMLYN
NGRPNO GRPNO
NBARCT BARLIN
NBRACK BRACK
NSPECN SPECSN
NPHMRK NO NAME
NSYSNT SYSINT
NSYSNHM SYSNUM
NSYSDN SYSDEN
NCOINT ATINT
NCONUM ATNUM
NCODEN ATDEN
NOTINT DURINT
NCTNUM DURNUM
NOTDEN CURDEN

NTIEND TIEIND

25

This is illustrated below for the beginning of the Superius.
(See Example 2.)

The third form cf the conversion process, called the

a tape and produces the same printout as the Reformatting
program does.

The specific information needed to run any of these
programs is given in APPENDIX 2A (page).

26

Example 1
Sample Print-out of Reformatting program

BTITLE HOSANNA

NE 1-SUPERIUS 2-ALTUS 3-TENOR 4-BASSUS

ASURE 82 HAS BEEN RENUMBERED AS 1 HERE

1 CLEF G TIME (C/) KEY F * % x % *
1T1 1 221 1111 244 1
R/ R B/ BCD/ G/ RC/CBAAA/Y
HO SAN NA
$1% KEY F CLEF C3 TIME (C/) * * * * *x %
11 2 2 1 11 11 24 41 221
RLB/ B UCD/ LG/ R UC/ C LB A A/ A B UC//
HO SAN NA
$18 CLEF C3 KEY F TIME (C/) * * *x *

11 11 11 11 11 1

LG/ G/ uUb/ E/ E/ R//
HO SAN NA

1 CLEP F KEY F TIME (C/) * *
1. 2 1 1 221 11 1.2 1 1
B U0C/ D LG/ G A B/ UC/ LA B/ UC LF//
HO SAN NA

N.B. The different orders in which CLEF, TIME, and KEY
information appears here in the different lynes reproduces
the order in which the keypuncher(s) originally coded it:
the order is optional.

Example 2
Sample Print-ocut of Register printout program

LYNE 1-SUPERIUS 2-ALTUS 3-TENOR 4-BASSUS

MEASURE 82 HAS BEEN RENUMBERED AS 1 HERE

XNSTRU
SUPERIUS

MEASNO LYNENO NOTENO NREGCL NOTECL NTIEND
14

1
NSEMIT DIA
0

NUMLYN NGRPNO NSUGGA NBRACK NPHMRK NSPECN

1

10

1

ICLEPH SIGKEY KFYPC

0 10

0

14

0

0

0

0

0

REPKEY TSNUM TSDEN TSV

F

NBARCT NPRECA NSTAFP NDURAT NDOTND

1

0

55

0

14

2

0

0

0

NBARCT NPRECA NSTAFP NDURAT NDOTND

55

0

3

0

0

4 Y 0 0
TEXT=
MEAS ATTACK TIME 0 o/ 1
SYST ATTACK TIME 0 o/ 1
. COMP ATTACK TIME 0 o/ 1
DURATION CUR. NOTE 2 0/ 1
MEASNO LYNENO NOTENO NREGCL NOTECL NTIEND
2 1 1 14
NSEMIT DIA
0 0 0
NUMLYN NGRPNO NSUGGA NBRACK NPHMRK NSPECN
4 0 0 0
TEXT=
MEAS ATTACK TIMF 0 o/ 1
SYST ATTACK TIME 2 0/ 1
COMP ATTACK TINE 2 0/ 1
DURATION CUR, NOTE 1 0/ 1

MEASNO LYNENO NOTENO NREGCL NOTECL NTIEND

9

NSEMIT DIA
58 B

1

2

4

10

0

NBARCT NPRECA NSTAFP NDUEKAT NDOTIND

1

0

21

3

0

NUMLYN NGRPNO NSUGGA NBRACK NPHMRK NSPECNWN

4 0
TEXT=HO

MEAS ATTACK TIME
SY3T ATTACK TIME
COMP ATTACK TIME

DURATION CUR.

NOTZE

0

b) -

0/
74
o/
0/

0

- e b b

1

0

c/

2/

27

1

28

CHAPTER II

M.I.R., REGISTER INFORMATICN

This chapter will discuss the data-structures generated
by the conversion program; i.e., what the user has at his
disposal.

The categories for each note are read from the tape
into the M.I.R. registers through a call to a particular
Fortran subroutine or function in his program. The various
registers filled by the execution of any of the possible
information-retrieval sub-program calls have been designed
to include in many different forms the information usually
associated with a note of music, providing as many different
ways as possible of handling the basic information. The
locations of the information are given symbolic names which
refer to computer-memory locations, It is important to
remember that at any one time in a M.I.R. program's
operation the registers are filled with the information for
the current note only, i.e., the note called up by the last
executed M.I.R. commandx*,

Each M.I.R. register in the list below 1is assigned a
specific amount of storage space and this is defined in
terms of computer-words {(each consisting of 4 bytes, a byte
being 8 binary digits). A byte can represent one
"character™., A computer-word can represent 4 "“characters".
A1l M.I.R. registers are some whole number of computer-words
long., For registers 1longer than one computer-word, a
parenthetical numeral appears in the listing below after the
the name of the M.I.R. register. M.I.R. Tregisters storing
information in the form of "characters" have been "declared”
(identified) as such by a Portran statement: REAL * U4 (here
the asterisk does not mean "multiply by", as it does
elsewhere 1in Portran, but the whole expression means that
the information is stored in one computer-word equal to &
bytes, and with the capacity of storing 4 "characters").

* Thus the "previously current note" is not necessarily the
preceding note in the music; it is the note that has Jjust
previously been under consideration (this is what current
means) and might be at any distance before or after, above
or below the current note, depending upon what sort of
relation with the current note is being examined.

29

Registers storing information in the form of numbers
have been declared as such by the Fortran statement: INTEGER
* 4, meaning again that the information is stored 1in one
computer-word, equal to U4 tytes, but with the capacity of
storing only one number.

Occasionally "characters" are stored one per
computer-word (instead of the 4 possible). In this case the
information is "left-justified" in the computer word and 3
trailing blank characters are put in to fill up the rest of
the word. Similarly, if the number of <characters
constituting the information for multiple-computer-vord
registers does not fill the space reserved for this
register, the information is left-justified within the total
space provided, and trailing blank characters are inserted
to fill up that space.

It is necessary to know whether a M.I.R. register
contains REAL or INTEGER representations and this is
indicated in the list below, Computations can be done with
INTEGERS only. "Characters™ must be "logically" treated (as
= or # to something). Por printing the information in a
Fortran program one must specify the mode (A for REAL
("characters"), or I for INTEGER (numbers)), since the
input-output procedures in printing the desired information
will interpret the same binary numbers stored in the
computer memory differently according to which mode is
specified.

30

Label Registers

The conversion program incorporates into every record
it generates information for the following M,I.R. registers
(these registers are all declared as INTEGER * U4 except
TYPE) :

TYPE (REAL * 4)
The first computer-word of every record
contains the characters HEDB, LYNB, NOTB, TALB, or
ENDB to identify the type of record read into
computer storage during the execution of any MIR
order.

NFIL (number of file)

Every record has the serial number of the
current ccmposition on the input tape. Used in
connection with the TOCOMP subroutine. (See
Chapter IIT.)

NSEC (number of sub-section)
Every record has the serial number of the
sub-section of a composition to which it refers.
Used with the TOSECN subroutine discussed in
Chapter III.

NREC (number of record)

Every record is given a serial number in
ascending order from 1, as it is generated. This
register is used in conjunction with TOCURN
(subroutine which accesses a note which was
previously the current note) discussed in Chapter
ITI.

31

HEDBLK Registers

The following registers contain information that has
been read in via HEDBLKS. This information can change only
at the beginning of a sub-section. Note that all these
registers are REAL * 4 and the information in them is
left-justified within the total space of the number of
computer-words represented by the number 1in parentheses
after the name of each register.

POSER (8):
The name of the composer of the current note,
if entered as an I.M.L. *=COMPOSERbDXXX?
program-analysable comment. Otherwise blanks.

TITLE (11):

Similarly, the name of the composition
containing the current note,

SUBTIT (6):
Similarly, the subtitle of the sub-section’
containing the current note.

AUTHOR (8)
Simlarly, the name of the writer of the text
that accompanies the current note.

LISHER (8):
Similarly, the name of the publisher of the
composition containing the current note.

EDITOR (6):
Similarly, the name of the editor of the
compositior containing the current note,

PUNXER (7):
similarly, the name of the keypuncher who
punched the I.M.L. code for the current
sub-section or comrosition.

RANGER (5):
Similarly, the name of the arranger of the
composition or sub-section containing the currrent

note,

32

LYNBLK Registers

The LYNBLK registers, listed below, are available for
use in a M¥.I.R. program at any time, but are not
recalculated for every new current note unless in the
process of scanning the data for retrieval of that note a
new LYNBLK is encountered.

According to the following table:

Contents of CLEF
1 treble clef with 8ve-above meaning
treble clef with 8ve-below meaning
bass clef
baritone clef
tenor clef
alto clef
mezzo-soprano clef
soprano clef
G-clef on first staff line
trekle clef
contra-bass clef

- OV & W

- -

@]

K

o]

) §4

7
AL There has been an error in the design of this
register. If the key-signature of a composition
was expressed in terms of a parenthetically
enclosed list of sharps or flats, the results of
« that method of representation are stored in these
7 computer words in terms of the NOTECL (see
NOTBLK registers p) of the altered note. Thus
a key-signature with only one flat (B-flat) would
have a 10 in the second of the 7 computer words
representing the 7 diatonic note-classes (A, B, C,
D, E, F, G) and a zero in each of the other 6
computer words. A key-signature with P-sharp,
C-sharp and G-sharp would have a 6 in the sixth
computer word, a 1 in the third, an 8 in the
seventh, and zeros in the other four, But this
then means that it is not possible to store the
information of a key-signature in terms of a
parenthetically enclosed 1list of sharps if that
key-signature includes B-sharp.

ITSVNM, ITSVDN:
The "value" (considered as a rational number
of vhole-note units) of the time-signature

33

affecting the <current note 1is stored as a
lovest-terms fraction, numerator in ITSVNNM,
denominator in ITSVDN. B.g., a time signature of
12/8 +vould be stored as 3 in ITSVNM and 2 in
ITSVDN. Remember that all time-signatures which
are not "fractional" rmrust be defined in I.M.L.
with a RETIME comment, with the exception of the
initial values of C, C/, and C-, which are all
2/1.

{REAL * 4), TSDEN (2) (REAL * 4):

The time-signature affecting the current note
(actually the current lyne as well) is stored in
TSNUM and TSDEN in alphameric form as follows:if
the time-signature comprises a numerator and a
denominator (e.g., 3/4), then the numerator is
stored in TSNUM and the denominator in TSDEN; two
characters apiece are allowed. (A single number
will be 1left-justified). If a time-signature
consists of a number only, or a combination of
letters and numbers (enclosed within parentheses
in TI.M.L.), it will be left-justified within the
total storage space contained in TSNUM and TSDEN
together. If a symbolic time-signature has more
than 4 characters in it, disregarding the
parentheses, the excess over 4 characters will be
lost.

EPKEY (2) (REAL * 4, each word contains one character

left-justified):

If, however, the key-signature was given in
the standard form of a letter representing the
tonic of a major key, that result is stored in
REPKEY. REPKEY(1) is the diatonic letter name of
the key, and REPKEY(2) is the alteration, S for
sharp, T for flat, or blank for no alteration.

{3) (REAL * 4, left-justified):

The name of the musical instrument or voice
scheduled to perform the current note is stored in
adjacent computer words INSTRU(1), INSTRU(2) and
INSTRO(3), left-justified with trailing spaces.
If the name contains more than 12 characters it
will be truncated.

{7) (REAL #* 4, each word contains one character

left-justified):
If the key-signature of a composition was

34

expressed in terms of a parenthetically enclosed
list of sharps or flats, the results of that
method of representation are stored in these 7
computer words with the characters S for sharp and
T for flat, left-justified within each word.
SIGKEY (1) stands for A, SIGKEY(2) stands for B,
SIGKEY(3) for C . . . SIGKEY(7) for G. A blank
character is inserted if there is no sharp or
flat.

35

NOTBLK Registers

The follovwing registers refer specifically to the
current note, and can change every time a new note (NOTBLK)
is made current. All registers are declared as INTEGER * 4
unless specified differently.

M. I.R.
REGISTER CONTENTS
HEASNO
The number of the measure in which the
current note occurs.
LYNENO
The number of the lyne in which the current
note occurs.
NOTENQ
The number of the note within the current
measure of the <current lyne. (Remember that a
rest is counted as a note,)
OTECL

14 If the current note is a rest. Otherwvise
the note-class of the current note. All C's,
B-sharps, and D-double-flats are assigned to
note-class 0, all C-sharps, etc., to note-class 1,
and so on.

EGSTR or REGCL*
14 If the current note is a rest. Otherwvise
the register of the current note. Middle C
through the next higher B is assigned to register
t; notes in the next higher octave to register 5,
etc.,

The number of semitones that the current note
is above an arbitrarily defined zero point which
is the non-existent C four octaves below middle C.
Middle C = 48, Since the note corresponding to
this zero point would never appear in any score,
the zero symbol never needs to be wused for

* Programmers have used both terms REGSTR and REGCL, so
these have been equivalenced.

36

representing pitch, and is used instead to
represent a rest.

PRECAC
o if the <current note 1is not preceded
immediately by an accidental; otherwise, according
to the following table:
Contents of
ERECAC
1 sharp
2 flat
3 double-sharp
4 natural
5 natural and sharp
6 natural and flat
7 double-flat
SUGGAC

0 if the current note is not affected by an
accidental, Otherwise 1, 2, or 3 for a sharp, a
flat, or a natural, respectively.

In the evaluation of NOTECL and SENITO an accidental is
considered as lasting through the measure., However, PRECAC
and/or SUGGAC are not altered by the program to reflect such
an assumption.

37

55 If the current note is a rest, Otherwvise,
the number of the staff-position of the current
note according to the following diagram:

54
R e e bl
52
o e D
50
R
us
L e et
4e
Upper leger lines: L e At
4y
43=mmmmmm e m e
42
e ittt Db b b L
40
39-=——mmmmmm e
38
K e e s
36
e
34
itttk B S S e
32
3l e e e e e
30
i e
28
E R i T .
26
e b
24
23-- e
22
Lower leger lines: 2 e
20
19— -
18
L e L B e S TR

38

According to the following table:

Contents of

DURAT
long
breve
whole (semibreve)
half (minim)
quarter (semi-minim)
eighth (fusa)
16th (semifusa)
32nd
64th
128th
grace-note

NOOWONON U EWN -

-t

DOTIND
0, 1, 2, Or 2 according as the current note
is undotted, single-dotted, double-dotted, or

triple-dotted.

This register contains the total number of
lynes in the composition at the place where the
current note is. (Not a value which could change
for every note, but nevertheless part of each
NOTBLK.)

0 If the current note is not an element of a
triplet group; 3 if it is.

0 If the current note is not followed
immediately by a barline indication; 1 if the
current note is followed by a single barline that
does not end a staff; 2 if the current note is
followed by a single barline that ends a staff; 3
if the current ncte 1is followed by a double
barline; and 4 to indicate the end of a complete
section, as opposed to 3 which merely indicates
the end of a sub-section,

o)
[e]
o>
Ig!
I

|

0 If the current note is not affected by any
ligature-denoting brackets. Otherwise, 1, 2, or 3
according as the current note is affected by the

39

beginning, middle, cr end of a bracket.

SPECSN
This computer word contains 0 if no special
signs affect the <current note., If the current
note is affected by a fermata, SPECSN contains the
number 12, Symbols for other special signs are
not yet established.
MESINT, MESNUM, MESDEN

MESINT 1is the number of whole-note units
between the beginning of the current measure and
the current note. MESNUM/MESDEN represents the
fractional parts of a whole-note unit vhich when
added to MESINT give the measure-attack-time of
the current note. (Note that if no fractional
parts exist, the numerator of a set of attack-time
registers is 0 and the denominator is 1.)

SYSINT, SYSNUM, SYSDEN _
In like manner, the number of whole-note
units plus a fracticn of a wvhole-note unit betwveen
the beginning of the current system of the score
and the current note,

ATINT, ATNOUM, ATDEN (or AT (3))

Similarly, the number of whole-note units
plus some fraction of a wvhole-note unit betwveen
the begirning of the current composition and the
current note, '

DURINT, DURNUM, DURDEN
The duration of the current note, expressed
in terms of units of whole-notes plus a fraction
of the whole-note unit, (The attack-time of a
note plus its duration equals the attack time of
the next note in the current lyne.)

DNC (REAL * 4, left-justified)

The "diatonic note-class" of a note 1is the
same as the letter-name of the note. Blank
characters are inserted in this register if the
note is a rest.

TEXT(8) (REAL * 4, left-justified)
Blank characters if no text accompanies the
current note. Otherwise, that text, 16 characters
maximum, left-justified with trailing blank

40

characters to make up the total 16, stored 4
characters per computer word.

1 TIf the current note 1is tied to the
preceding note in the same lyne, 2 if there is a
suggested tie from the preceding note, otherwise
0.

41

Interval Registers

The following M4.I.R. registers are calculated not
during the conversion process, but during the operation of a
MIR program each time a new note is made current and this
only if the subroutines PREP, CAL, and NGENU (see Chapter
III) are included. The registers refer not just to the
current note, but to the previously current note as well.

5.I.R.
REGISTER CONTENTS
INTYL
The pitch-interval between the current note
and the immediately previous current note is
stored in INTVL as a signed nurber of semitones:
the sign is negative if the current note is 1lover
in pitch than the immediately previous current
note; otherwise the sign 1is positive. If the
immediately previous current note is a rest, or
there is no immediately previous current note (as
at the start of a M.I.R. program) or if the
current note is a rest, then INTYL contains zero.

INTDIR, INTREG, INTNOQOT

The interval between the current note and the
immediately previous current note 1is represented
in INTDIR, INTREG and INTNOT as follows: if the
current note 1is lover in pitch than the
immediately previous current note, then INTDIR
contains 1; othervwise INTDIR contains 0. The size
of the interval in terms of registral-span (0 for
less than an octave (1-11 semitones), 1 for an
octave or less than tvo octaves (12-23 semitones),
etc., and NOTECL difference, is stored in ‘INTREG
and INTNOT respectively.

For the computation of INTDIR, INTREG and
INTNOT only, the "pitch"™ of a rest is considered
to be register 0, NOTECL O. E.g., if the
immediately previous current note wvere middle C
and the current note were an 8th-rest then INTDIR,
INTREG, and INTNOT would contain 1, 4, and 0
respectively.

If there is no immediately previous current
note, then INTDIR contains 2, INTREG contains the
register of the current note, and INTNOT contains

Contents
DINTVL

— >

42

the note-class of the current note,

If the current note 1is a rest or if the
immediately previous current note is a rest, or if
there is no immediately previous current note,
then DINTVL contains 0 as do also GENUS and DIOCT.
Otherwise, the "diatonic" 1interval (that is the
interval as measured on the staff, rather than by
the number of semitones {(note that DIOCT for the
interval middle C to the first C-flat above it
will be 1, even though it measures only 11
semitones)) between the immediately previous
current note and the current note is represented
in DINTVL, GENUS and DIOCT as follows:

of Contents of
Interval GENUS Interval
unison, octave, 1 doubly diminished
double-octave, etc. 2 Diminished
second, ninth, etc 3 minor
third, tenth, etc. y Perfect
fourth, eleventh, etc. 5 Major
fifth, twelfth, etc. 6 Augmented
sixth, thirteenth, etc, 7 Doubly augmented
seventh, 14th, etc. 2 Any other interval

Contents of
DIOCT
0
1

n

DINDIR ("D

——— ——

Interval
sraller than an octave
at least an octave (see remarks under INTREG
above), but smaller than two octaves
n octaves or larger, but smaller
than n+1 octaves,

iatonic”" interval direction):
Let z denote the current note and y the
previous current note. Then DINDIR contains:

1 if z is "diatonically" lower than y;

2 If z or y 1is a rest, or if y does not
exist;

0 If z is "diatonically" higher than or at
the same pitch as y.

43

Chapter III
M.I.R. Suk-programs

Once the I.M.L. version of some music has been
interpreted and converted to the data-structure described in
Chapter II, the ©problem becomes one of retrieving the
information. A M.I.R. program consists of a body of
pre-existing subprograms to which the user must add, at a
designated point, a section devised by him (which is not a
sub-program but cormpletes the MAIN routine).

MAIN routine

This starts with certain storage declarations and
statements, which the user will find ready made, to access
the first note of the first lyne of the first composition of
the tape file being read. Then follows the user's part of
the program, which effects retrieval of some part of the
data-structure on tape via calls to ready-made sub-programs,
The names of the M.I.R. registers (see Chapter II) are
variables in the MAIN routine. Those registers whose
information comes from LYNBLKs or HEDBLKs are automatically
"unpacked", 1i.e., can be referred to by name. Information
from NOTBLKs is not unpacked except in specific cases noted
below. Before the beginning of the user's own part of the
program, provision has been made for accessing the first
note, which 1is wrade the ‘"current™ note, and the NOTEBLK
registers applying to it are unpacked. Prom here on the
user must supply all program statements and the MAIN routine
must end with a PFortran END statement. Any call to an
information-retrieval subprogram will access some note of
music which will be termed the "current" note.

The M.I.R. system is modular, in that specific tasks
are performed by specific sub-programs. It 1is therefore
possible to call on each module separately. But this is not
normally necessary or desirable, since sub-programs designed

to perform combinations of tasks automatically call
lover-order sub-programs to perform the individual tasksx,

The following subprograms are the only ones which the

user will normally specify explicitly in his program.
M.T.R. register names must not be used alone as arguments,

* Table VI at the end of this chapter shows the hierarchy of
some of the sub-programs.

4y

The following two subroutines, TOTITL and TOCOMP, can be
used only with a M.,I.R. data tape that contains all
compositions combined into a single file.

TOTITL ('TITLE---')

This subroutine effects the retrieval of a
composition within a tape file by name. 1If the
composition cannot be found, an error message is
printed out and the originally current note is
restored. The argument must be enclosed within
single quotes, must be the exact form of the TITLE
comment in the I.M.L,., version of the music, and
must be, with as many trailing blank characters as
necessary, 44 characters long. A table of the
composition titles read in so far is automatically
kept and as with TOSECT the search is converted to
a search by composition number.

The serial-number of some composition on the.

input-tape file appears as the argument in a call
to this subroutine. The first note of the first
lyne of the desired composition 1is made current
(by a call to TOSECN(1) which is built into
TOCOMP). The value of ENDF (see Table V under
subroutine READBK below) should be tested after a
call to TOCCMP. 1If it 1is greater then 0, the
composition desired does not exist,

TOSECT ('SUB-SECTICN NAME')

2 sub-section within a composition may be
retrieved by name, i.e., by the exact form of the
SUBTITLE given in the I.M.L. coding of the music.
(If the sub-section name cannot be found, an error
message to this effect 1is printed and the
originally current note is restored.) The
argument of this subroutine must be enclosed
within single gquotes and must be, ¥with as many
trailing bLklank characters as necessary, 24
characters long. The value of the M.I.R. register
SUBTIT as well as the sub-section number to which
it refers is stored in a table for each
sub-section read so far in the subroutine READFD
(see below). This enables this TOSECT to convert
the search for a section by name to one for a
section by number, and subroutine TOSECN is
called.

45

TOSECN (N)

A subsection within a composition vwhose
serial-numbér is the value of the argument in the
call to this subroutine is searched for and the
first note in lyne 1 of the sub-section is made
the current note. The value of ENDC (see
subroutine SEARCB below) should be testad after a
call to TOSECN. If it 1is greater than 0, the
section desired does not exist,

The argument for TOSECN or TOCOMP must not be such that
its value would turn out to be zero or negative. This could
result in a vain search for a NOTBLK before record 1 on the
tape. If there 1is a possibility of this, DEC (see
subroutine SEARCB below) should be tested, because the
backward search will have stopped at record 1. Such a
failure does not result in an error message or in the
restoration of the current note.

TONEXT, TOLYNE(N), TOMEAS{(N), TONOTE(N)

B call +to TONEXT gives the next note in the

current lyne., Entry TOLYNE(N) finds the first
note in the current measure of lyne N*,
Entry TOMEAS(N) finds the first note in measure N
of the current lyne. Entry TONOTE (N) finds note
N in the current measure and 1lyne. But if in
TONOTE (N) the argument is given a value higher
than the number of notes in the measure concerned,
the notes in as many succeeding measures as
necessary will be considered as members of a
numbered series beginning with the first note of
the original measure. Thus if a note-number 6 is
given for a measure that has only five notes, the
first note of the next measure will be found.

N may also be given the value of a relative
reference, such as (NOTENO+M) or (NOTENO-M). If
the value of (NOTENO-M) is zero, the last note of
the preceding measure will be found; if it is -1
the next-to-last note will be found, etc. 1If the
value of (MEASNO-M) is zero, the first note of the
last measure of the preceding section will be

— — ——— e ————————

* ENTRY statements permit one to begin the execution of a
sub-program at some point other than the beginning.

46

found, etc.

In the case of lyne-number, a value greater
than the number of 1lynes or 1less than 1 is
adjusted in a rotational manner. For example, a
value of 5 in a three-voice section would find a
note in lyne 2.

TOCURN(N) , TOREC(N)

If N has previously been made equal to the
value of NREC for a specific NOTBLK, the
subroutine TOCURN (N) will make that NOTBLK
current, The argument N may be a constant as well
as a variakle. Entry TOREC(N) performs the same
operation but does not call PREP, CAL, or UNPACK
(see below).

NOTE(N), ATTACK(J,K,L,N)

These subprograms are FUNCTIONs and are
called by a statement such as M=NOTE(N). NOTE({(N)
finds the note in the 1lyne 1indicated by the
argqument N sounding simultaneously with the attack
of the note that was current before the execution
of this function. The entry ATTACK(J,K,L,N) finds
a note in 1lyne N sounding at the composition
attack time given in arguments J, K and L (but not
necessarily attacked at that time.). Both NOTE(N)
and ATTACK(J,K,L,N) have the same values: 1 if the
attack-time for the note found is the same as that
of the previously current note, and 0 if not.

This subroutine finds a note vhose
attack-time is the closest following that of the
current note, irrespective of what line it occurs
in, The subroutine examines all notes in all
lynes in the current measure and the note with the
attack-time least greater than that of the current
note is selected. 1In case there is no next note
in the current composition, the value of N is set
by FINDFD(N) to -1, otherwise it is set to zero.
Fnd of section may be detected in this and other
cases by testing the value of BARLIN to see if it
is greater than 2,

47

FINDBK (N)

This subroutine finds a note 1in any lyne
whose attack-time is the closest previous to that
of the current note. The process is the reverse
of FINDFD. If there is no previous note, N is set
to -1, othervise 0. In this case and the
corresponding situation with FINDFD, whenever N
=-1 the note that was current before the
subroutine vas called is restored.

The following subprograms are not involved with
information retrieval, but are useful in writing a M.I.R.
program, v

_g_g_;_g FRACOM(NA,NE,NC,ND,NE,NF) (Fraction comparison)

Two fractions may be compared to determine
vhich 1is greater in value, or whether they are
equal. The fractions (including vhole-number
portions which may be zero) are NA + (NB/NC) and
ND ¢+ (NE/NF). The value of this function is 1, 2,
or 3 depending on whether the first fraction 1is
greater than, equal to, or less than the second.
Arguments must not have negative values, and 1if
they have whole-number portions their fractional
portions must be less than 1.

RALCD(J, K,L)
Fraction J + (K/L) is reduced to the 1lowvest
terms if possible,

]

FRACAD(J, R ,L, M, N,NN)
Fraction J/K is added to fraction L/M and the
result is placed in N/NN.

FRASUB(J K L M N NN) |
Praction L/M 1is subtracted from J/K and the

result is placed in N/NN,

FPRAMPY (J, K L, ¥, N,NN)
Fraction J/K is multiplied by fraction L/K
and result is placed in N/NN.

The printed output obtained during the execution of a
Fortran program does not automatically have a desirable
number of blank lines at the bottom of a page. This may be
accomplished by the use of the following subprogram provided
in M,.I.R.:

us8

SPACER(N) ,INIT,SKIP,LINE

Spacer (N) provides a means for keeping track
of the number of lines that have been printed (or
skipped) on a page during the execution of a
Fortran program. The user arqument N has a value
equal to the number of 1lines that the user's
program will print or skip before the next call to
this subroutine. N is added by this routine to
the total count of the number of 1lines on the
current page and if that count is raised to a
value greater than 60, the top of the next page
will be accessed prior to the statements in the
user's program vhich will actually cause the
printing of the number of lines given in the
arqument N, Entry INIT skips immediately to the
top of the next page and sets the count variable
to zero. This should be called at the beginning
of any program thet uses SPACER(N). Entry SKIP
skips a line but does not count it. Entry LINE
skips a line and counts it. :

49

FUNCTION ABGS (N,M)
This function allows the comparison of
diatonic values among notes governed by different
clefs. N is the clef number from M.I.R. register
CLEF, and M is the value of STAPPO for the note in
question., The value of this function is zero for

a rest,
etc.

99 —--==49---—-

g g 48
j==--g-g====-c-e-—ece——- 47—~
| g9 46
|=---gg--—-----—-—————e 4S------o---
| 94 4s
|=g--g--===—-=--c~e-——-—-- 43--=-mmmm—-
19 9499 42
1g--99--g-——=—=-=--=------- e
l9 9 g 40
I--999gg-----=-=-=--=---- 39-=-mmmm o
| g 38
r meee 37-----
| 36
|- fEfff-m-mommommmmme e 35-----eman
| £ f. 34
|f-ff---fo-ommm e 33—
|£f££ f. 32
|~~--=- fommem e - 31--meemenm
] f 30
R e e 29-----oo---
| £ 28
R e 27—

26
..... 25cacaa
24
———e=D3ee e

50

DIABS(K,DUM)

99

g
|----g-
L

I-g=--g-
g9 99
19--g9-
Il 9 49
I--g94999
! g
|

|
|-f£f££

1f-f£f--
|f£££

DUM 1is an array of three computer words in
which are stored three characters representing the
absolute pitch of a note in terms of its
letter-name. The value of DUM is calculated given
the arqument K which is the SEMITO value for the
note. Upper-case letters are used to indicate the
octave from C 2 octaves below middle-C to the B a
7th above, Lower-case letters 1indicate the C
below middle-C to the B an octave and a 7th above
middle-C. A single quote indicates middle-C to
the B a 7th above, Double quotes indicate the C
an octave above middle-C to the 7th above that.
Sharps are indicated by the # character. Flats
are indicated by 1lower-case b. Any notes which
fall outside this range will result in erroneous
formations,

b"
g
Jr=—mmmmrrme— e e —————
......... ;‘-'
....................... D' e =
g9
—g
g
e e e e D D et i
b S et
b
f.
B et e
f.
C
————————————————— B-———-————.—-----

- — - - -y - -

51

The following 12 sub-programs are of lower order, and
will therefore not normally be called explicitly by the
user. Their descriptions are included as a matter of
documentation. All are SUBROUTINEs except where otherwvise

specified.

UNPACK
This subroutine moves material pertaining to
the NOTBLK into an array which can be accessed by
the user via the M.I.R.-register names. This
subroutine is called automatically by any of the
following sub-programs: TONEXT, TONOTE, TOMEAS,
TOLYNE, TOCURN, TOSECN, TOSECT, TOCOMP, TOTITL,
NOTE, FINDFD, and FINDBK. No other retrieval
subprograms call this routine, and if they are
used by the programmer he must call UNPACK himself
if he desires to utilise the M.,I.R. registers
wvhich come from the NOTBLK record containing the
informaticn for the carrent note,

BREP (Prepare)

This subroutine saves the values of SEMITO,
REGCL, and DNC which will be needed to calculate
the M.I.R. registers pertaining to the interval
between the current note and the previously
current note, This routine 1is automatically
called by the same subroutines as given in the
description of UNPACK,

CAL (Calculate)

This subroutine finishes the vork of
calculating the M.I.R. registers which give the
value of the pitch-interval between the current
note and the previously current one. This routine
is called at the conclusion of the operations
performed by the retrieval subroutines mentioned
in the description of UNPACK. The values and
names of pertinent M.I.R, registers are given in
Chapter II. Tables I and II (below) give the
value of DINTVL in accordance with the information
from which it is derived. Table III gives the
values for GENUS, DIOCT and DINDIR.

52

If INTVL is positive, the values of DINTVL
are according to the following table:

Table I
current note A B C D E F G
previous
note
|] | { |] | |
a * 21 3¢ 4 51 64 7}
| | | | }] | |
b | 71 *|1 24 31 &)1 5141 61
| |] | } | | |
c] 6 71 * 1 24 3 4 51
|] | | | |]
4 l 51 61 741 *1| 21 31 4|
| [| |] | | |
e | 4 ¢ Sy 61 71 *4t 21 31
i | | | | | | |
£ | 31 41 591 61 71 *} 21}
| | | i | | | {
g | 21 31 41 51 641 71 *|

- - - - —— D — - - ——— > . S W WD M A ——— - -

* not calculated from this table

53

If INTVL is negative the values of DINTVL are
according to the following table:

Table II
current note A B C D E P G
previous
note
| | | | | | | |
a] * | 74y 611 54§ 4} 31 21
] { | |)] { }
b | 21 *4y 71 6}y 591 4} 31
| | | | | | {
c i 31 2%y)} 7)) 61 51 4
| | i | | | |
d | 41 31 21 *=} 711 61 5
| |] | | | i !
e] 51 4y 31 2y *| 71 61
| | | | | | | |
f ! 6 1 S 4} 3} 214 *}| 71
| l | | 1 | | |
g l 71 641 51 4} 31 21 *]

D D D WD D D D - - - ———— - - - - -

* not calculated from this table

54

The values of GENUS are given in the
following table.

Table III

- D D WD D AR wn > - - —————— - — - —————_— - — - - - - -

-, S W R e - — - - - — - - - - - - - —— -

INTNOT | | |] | ! | < | +means that
=70 |4 12 18 18 |8 18 |6 | DIOCT = INTREG #1
i< { | { | | | < | < means that DIOCT
1 |16 {3 1 1 18 18 |8 17] = INTREG - 1
-- In the absence of
1< | | | | | | | the signs + and <,
2 17 15 |2 i8 |8 18 {8 { the value of DIOCT
-- is equal to that of INTREC
| | | o |
3 18 16 13 11 18 18 18 !
| | | | | | | i
4 |8 17 15]2 |8 18 18 | * means that
-- DINDIR is the
| | | | 1 | | | opposite of INTDIR;
5 18 18 |6 |4 11 18 18 { othervise they
-- are the same,
| | | | |
6 18 18 17 16 12 11 18 !
| | | |
7 18 |18 18 17 14 12 {8 |
| | | | |
8 18 18 i8 18 16 13 11 |
-- GENUS Interval
| | { | i 1 doubly diminished
9 18 {8 |8 18 {7 15 12 | 2 diminished
-- 3 minor
R4 | |] 4 perfect
10 i1 18 |8 18 {8 16 i3 i 5 major
-- 6 augmented
| + |+ * | | | 7 doubly augmented
1 {2 1 |18 |8 18 17 15] 8 any other interval

T = W YR - —— - P D - D WD D - - ——-— - - —— - -

55

NGENU (Table for GENUS)
This subroutine is called in MAIN before the
user's part and puts the values for Table III into
array NGEN.

Note that the use of PREP, CAL and NGENU slows down the
retrieval process considerably. If the user's program does
not make use of these routines they can be switched into
"dummy mode™ by specifying ISPREP = 0, ISCAL = 0, and
ISNGEN = 0 at the beginning of the user's program.

NUMPIC(DIA,KX) (Diatonic pitch numbers)

This subroutine translates the diatonic
letter-names A through G (argument DIA) into
integers 1 through 7 (argument KX). The use of
any other character for DIA will result in an
error message.

GET(J K,L)

This subroutine finds a note in the input
stream according to the three arguments given it
vhich correspond to the LYNENO, MEASNO and NOTENO
of the desired note. This subroutine may be
employed by the user in his program if he
remembers that the NOTBLK found will not be
unpacked. The arguments J, K and 1 must be
declared implicitly or explicitly as INTEGER * 4,
and the names of the M,I.R. registers cannot be
used as arguments except as constituents of
numerical expressions such as NOTENO + 1. This
subroutine calls SEARCF and SEARCB and the value
of ENDC is that returned by the last call it has
made to either of those routines.

SEARCF (Search forward)
This subroutine finds the next NOTBLK. As in
READFD, this does not mean necessarily the next
NOTBLK in the same lyne; it means next in the
order in which the records have been written on
the tape by the conversion program.

56

SEARCB (Search backward)

This subroutine finds the immediately
preceding NOTBLK (not necessarily in the same
lyne) . The settings of the variables in Table IV
indicate the status of the input after each call
to SEARCF or SEARCB. These variables available to
the user in his program are, DEC (decrement), ENDC
(end of cormposition) and ENDF (end of file).

Table IV
DEC ENDC ENDF Record just read
SEARCF 0 0 0 NOTBLK
0 1 0 Attempt to read past
end of composition;
originally current
note retained
SEARCB 1 0 1 Attempt to read back

past 1st record on
tape file; originally-
current note retained.

---———-——---——-——------————--—--------———--——---— - D e - - — - > - -

The settings of these variables will not
indicate reading forward or backward into
adjoining sections in one tape file. Testing for
this can ke done by examining the values of NSEC,
or BARLIN (see page). An unsuccessful attempt
to locate a particular NOTBLK results 1in the
restoratien of the previously current note.

SRCREC(N) (Search by record number)
' This subroutine locates a record on the the
tape with record nurber N.

READFD (Read forward)

This subroutine accesses the next portion of
data (either a NOTBLK, a HEDBLK (tvo records), a
LYNBLK, a TALBLK, or an ENDBLK). This is not
necessarily the next NOTBLK in the same lyne. It
is the next data block in the sequence put onto
the tape by the conversion program.

READFL is automatically called by any H.I.R.
subroutine in which forward scanning of the
material is required. Because it accesses the
next record, no matter what kind of information
that record contains, if the user has occasion to

57

call it explicitly, he will have to make various
kinds of tests to determine what kind of
information it has just accessed. The HEDBLK and
LYNBLK information is automatically unpacked into
the M.I.R. registers, where it remains available
until some other HEDBLK or LYNBLK is read.

j2e

EADBK (Read backward)
This subroutine finds the record (2 records
for HEDBLK) immediately preceding the current one.

To help d2termine what kind of information
has been accessed by READFD and READBK, whether
these routines have been called automatically by
other TrTetrieval-routines or explicitly by the
user, they set certain variables to 1 under
certain conditions and to 0 under all other
conditions, The conditions determining their
values are given in the following table:

Table Vv
DEC ENCC ENDF Record just read
READFD 0 0 0 NOTBLK, LYNBLK, or HEDBLK
0 1 0 TALBLK
0 0 1 ENDBLK
READBK 0 0 0 NOTBLK, LYNBLK or HEDBLK
1 0 0 Terminal HEDBLKs
of previous section
1 1 0 TALBLK of previous compositio:
1 0 1 Attempt to read back

past record on tape file

—--.—..-..-_--—-——-—-————-----,.-—_-—--—_—-——-—-—----——’-----'---‘——--——-Q.

IPGET (Get a record from the tape)

At the beginning of the M.I.R. program's
execution the first record on the tape is
identified as a starting point. TPGET finds the
next record. This routine may be entered at other
points for the performance of other functions.
ENTRY TPRACK moves tack one record.

This subroutine actually reads the tape, or
in most «cases, since the records are vwritten on
the tape in blocks of 200, simply indicates which
set of 40 computer words out of the input array of
200 records will constitute the next record

58

jesired. This routine does not use Fortran input
and output procedures, but instead utilizes Hale
Trotter's routines TPREAD etc.,, whose descriptions
are given in Appendix IV.**

Any manipulation of the tape must use these
routines only. ENTRY TPSTAR calls TPOPEN vhich
makes available a particular tape file. The
M.I.R. system as it stands now initializes only
the first file on whatever tape has been
identified as being on device 15. Statements to
do this occur in the MAIN routine before the
user's part of the program.

«%kMr. Trotter's input-output procedures are designed for any
IBM 360 machine.

Table VI

HIGH LEVEL

(CALLED BY USER)

TOTITL -

TOSECT =~

TONEXT
ENTRY
ENTRY
ENTRY

TOCURN
ENTRY

FUNCTION
ENTRY

FINDFD AND PINDBK

FRALCD,

TOCONP

TOSECN

TOMEAS
TOLYNE
TONOTE

TOREC

NOTE
ATTACK

FRACAD,

FRASUB, FRANPY,

FUNCTION

ABGS AND

SPACER
ENTRY
ENTRY
ENTRY

FRACONM

DIABS
INIT

SKIP
LINE

H.I.R.

MIDDLE LEVEL

UNPACK

CALLED BY ALL
HIGH LEVEL
SUBPROGRAMNMS,
EXCEPT TOREC

PREP, CAL, NGENU
MAY BE IN "DUMMY
STATE"™ DEPENDING
ON SETTING OF
SWITCHES: ISPREP,
ISCAL, ISNGEN

59

SUBPROGRAM HIBRARCHY

LOW LEVEL

GET

SEARCP AND SEARCB
PIND NEAREST NOTBLK

READFD AND READBK
PIND AND IDENTIFY
NEAREST RECORD

SRCREC
FINDS NUMBERED RECORD

TPGET
ENTRY TPSKIP
ENTRY TPBACK
ENTRY TPSTAR
THESE UTILISE
TROTTER'S
READING ROUTINES

60

Chapter IV

Sample user program

In this chapter, a sample user program will be given to
demonstrate the functions of various M,I.R. subprograms.
The program is written in PORTRAN.* Retrieval of information
is effected by CALLs to SUBROUTINEs or by the use of certain
FUNCTIONs; both procedures cause some rortion of the M.I.R.
data-structure to be made available in the storage locations
termed M.I.R. registers.

For demonstration purgoses, we will wuse a program
somevwhat shorter and simpler than most user programs. The
task, however, is typical: tc locate all harmonic augmented
fourths and diminished fifths and all harmonic fourths or
fifths which have been "corrected"--that is, made perfect--
by the addition of an accidental, either specified or
editorial. The entire program and a sample of the output
will be given,

There are several ways the problem might be attacked.
Here, we will assumre that the best approach is:
(1) to find every simultaneity** in a composition, and
(2) to examine every pair of simultaneously sounding
notes, and
(3) to print out those interval pairs which are relevant.

We can find every sirultaneity, as defined, in a
composition by moving from an initial attack point to each
successive attack fpoint in any line, finding at each point
the notes sounding simrultaneously. This can be done with
tvo M.I.R. subprograms:

ATTACK (see page)

FINDFL (see page)

*Tt is assumed that the reader knows FORTRAN.

**A simultaneity will be thought of here as the note
occurring at a particular attack-time in at least one lyne,
together with all the other notes in the remaining 1lynes
which are sounding at the same time.

a

aQaO0n0aon

61

The program can be thought of as in four blocks:

Block 1
Gather all information about "current?®
simultaneity.
Block 2
Identify pairs of notes within that simultaneity.
Block 3
Print results, if any.
Block &

Proceed to next simultaneity, make it ‘“current®
and go back to Block 1.

Thus blocks 1 and 4% form a loop which can be modified for
use in other programs, and therefore they will be explained
first.

The block 1 part of the program vhich stores the
information about the current simultaneity is given below:

PROGRAM TO FIND SIMULTANEOUSLY SCUNDING AUG. 4THS AND DINM. STHS
SWITCHES TO PUT PREP, CAL AND NGENU IN "DUMMY MODE" ‘ '
ISPREP=0
ISCAL=0
ISNGEN=0
DIMENSION NMESNO(6) ,NLYNE (6) ,NNOTE (6), RDNC(6) ,NCL (6),NPRAC(6),
1 NSGAC(6) ,NOTLST(6)
DIMENSION DNCSAV(2)
DATA DNCSAV/'B LD v/

1 WRITE(6,2) TITLE,SUBTIT

2 FORMAT(1H1,10X,'SIMULTANEOUSLY SOUNDING AUG.4THS AND DIM.STHS!',
1//,1X,11A“,//,ux,6lu,//)"
SWITCH SET TO 1 FPOR EACH LYNE WHEN LAST NOTE OF SECTION HAS BEEN READ
DO 3 J = 1,NUMLYN

3 NOTLST(J) = 0

BLOCK 1

INITIALISE WITH LYNENO (=1)
100 LIN=LYNENO
LN=LIN
SAVE RECORD NUMBER OF NOTE IN LIN
NAT=NREC
SAVE ATTACK TINE OF NOTE IN LYNE LIN
NATIN = AT(1)
NATNUM = AT (2)
NATDEN = AT (3)
SAVE RELEVANT INFORMATION OF NOTE IN LYNE LW
110 CONTINUE

115

120

62

NMESNO (LN) =MEASNO
NLYNE (LN) = LYNENO

NNOTE(LN) = NOTENO

RDNC(LN) = DNC

NCL (LN) = NOTECL

NPRAC (LN) = PRECAC

NSGAC(LN) = SUGGAC

IF (BARLIN .GE. 3) NOTLST(LN) = 1

INCREMENT LYNE NUMBER BY 1

CONTINUE

LN = LN#1

“CONVERTS" LN IF GREATER THAN NUMLYN

IP (LN .GT. NUMLYN) LN = LN-NUMLYN

CHECK TO SEE IF ALL LINES HAVE BEEN EXAMINED.
IP (LN .EQ. LIN) GO TO 120

PIND SIMULTANEOUS NOTE IN NEW LN

NDUMY?1 = ATTACK (NATIN,NATNUM,NATDEN,LN)

GO TO 110

CONTINUE

At the beginning of every M.I.R. user program,

the

"current™ note 1is the first note in lyne 1 of the first
composition on the tape. This is set up automatically by

the MAIN routine.

If wvwe call the note from which each simultaneity is
referenced the "primary note", its lyne number, attack time,

and tape-record number will need to be saved. This is
at the statements at 100.

done

The statements at 110 store all the relevant
information for the "primary note", and for the notes in the
other lines when they have been found, which will be needed

to calculate the intervals in the simultaneity.

At 115 ve proceed to the next line in the simultaneity,
first reducing LN to LN - NUMLYN if it is greater than
NUMLYN, and then checking to see that we have not returned
to the 1line (LIN) of the "primary note". The simultaneous

note in line LN is found by using the PUNCTION ATTACK.
value of ATTACK is not required in this program
therefore it is made equal to a dummy variable NDUNY1.)

(The

and

The program will move on from block 1 by means of
statement 120 when all the lines of the current simultaneity

have been read.

sNeNeNg!

400

410

420

BLOC

TEST
CONT
DO 4
IF (
CONT
GO T
RE-I
CONT
CALL
EXAM
CALL
GO T

Although the program will at this point proceed to
blocks 2 and 3, our description now jumps to block 4.

Having found the first simultaneity, how do we find the
next?

K 4

TO SEE IF LAST NOTE OF SECTION IN EACH LYNE HAS BEEN READ
INUE

10 J = 1,NUMLYN

NOTLST(J) .EQ.0) GO TO 420

INUE

0 460

NITIALISE WITH NOTE IN LYNE LIN
INUE

TOCURN (NAT)
INE ALL LYNES FOR FIRST SUCCEEDING ATTACK POINT
FINDFD (NDUMY2)
0 100

MOVE TO NEW SECTION
460 CONTINUE

CALL
CHEC
IP (
GO T

TOSECN (NSEC+1)

K TO SEE IF CURRENT SECTION IS LAST IN CURRENT COMPOSITION
ENDC .GT, 0) GO TO 470

o1

MOVE TO NEW MASS
470 CONTINUE

480

CALL
CHEC
IP
GO T
STOP
END

TOCOMP (NFIL+1)

K TO SEE IF CURRENT COMPOSITICON IS LAST ON TAPE
ENDF .GT. 0) GO TO 480

01

Block U4 commences at statement 400 by checking to see
if each of the notes of the current simultaneity is the last
note of its line of the current section of music. If so,
the program jumps to 460, If not, the program at 420 makes
the "primary note" of the simultaneity current again and
then wusing PINDPD the first succeeding attack point in any
line is found, and the note at this point is then made the
current "primary note" and the program returns to 100. If
more than one line has a new note at this attack time, one
of them will be automatically chosen as the "primary note".
(Again the value calculated by FINDFD is not needed in this
program, and it 1is also made egqual toc a dummy variable

C
C
C
C
C

NDUMY2.)

The statements at 460 are executed only when the end of

a section has been determined by the test at 400, First

We

try to proceed to the next section, If, however, the
original section was the last section in the composition
this will not be possible and the value of ENDC will be set
to 1 and ve proceed to 470, instead of returning to
statement 1. At 470 we similarly try to proceed to the next
composition, If the original composition was the last

composition on the tape this will not be possible and

the

value of ENDF will be set to 1 and we proceed to 480 angd

STOP, instead of returning to 1.

After gathering the infcrmation in block 1 on the
simultaneity at a certain attack point, all the intervals
between the various note-pairs are calculated and checked to

see if they satisfy the conditions of the program task:

BLOCK 2

DETERMINING INTERVALS

200

210

250

260

1260

JX=NUMLYN-1

DO 399 JJ = 1,JX

IF(NCL(JJ).EQ.14)GO TO 399

JY=JJ+1

DO 398 JJJ = JY,NUMLYN

IF(NCL (JJJ) .EQ.14) GO TO 398

INT=IABS (NCL (JJ)~NCL (JJJ))

IFP(INT.EQ.5.0R.INT.EQ.7)GO TO 250

IF(INT.EQ.6) GO TO 260

GO TO 398

IAC=0

IF (NPRAC(JJ).GT.0.0R.NSGAC (JJ) .GT.0)GO T0O300

IF(NPRAC(JJJ) .GT.0.0R.NSGAC (JJJ) .GT.0)GO TO 300
IP((RDNC(JJ).NE.DNCSAV (1)) .AND. (RDNC(JJ).NE.DNCSAV{2)))GO TO
IF((RDNC(JJJ).NE.DNCSAV{1)).AND. (RDNC (JJJ) . NE.DNCSAV (2))) GOTO
IAC=1

GO TO 300

IAC = 0

IF ((RDNC(JJ) .NE.DNCSAV (1)) .AND. (RDNC(JJ).NE.DNCSAV(2)))GO TO
IF((RDNC (JJJ) . NE.DNCSAV (1)) .AND. (RDNC(JJJ) . NE.CNCSAV (2)))GOTO
GO TO 261

CONTINUE

IF ((NPRAC(JJ).NE.O0) .OR. (NSGAC(JJ).NE.0)) GO TO 261

IF ((NPRAC (JJJ) .NE.0) .OR. (NSGAC(JJJ).NE.O)) GO TO 261

398
398

126(
126C

aaoanan

65

IAC=1
261 GO TO 350

BLOCK 3

WRITE SECTION POR CORRECTED U4THS AND S5THS
300 CONTINUE
WRITE(6,301)
301 PORMAT (1K, 'cececcsooscccsannsacsonasscsansenst)
IF (IAC .GT. 0) GO TO 1302
WRITE (6,302)
302 FORMAT (1HO,'CORRECTED FOURTH OR FIFTH BETWEEN?!)
GO TO 310
1302 WRITE(6,2302)
2302 PORMAT (1HO, 'CORRECTED FOURTH OR FIFTH ASSUMING')
WRITE(6,303)
WRITE (6, 35U4)
WRITE (6,303)
WRITE (6,355)
310 CONTINUE
WRITE (6,303)
303 PORMAT (1H+," 1)
NPAIR = 1
NWRIT = JJ
320 CONTINUE
WRITE(6,321) NMESNO (NWRIT),NLYNE (NWRIT),NNOTE (NWRIT),RDNC(NWRIT),
1 NCL(NWRIT),NSGAC (NWRIT),NPRAC (NWRIT)
321 PORMAT (/,6X,'MEASNO LYNENO NOTENO',/,6X,3I6,/,6X'DNC NOTECL SUGGA
1C PRECAC',/,7X,1A1,316,/)
IF (NPAIR .GT.1) GO TO 390
NPAIR = NPAIR + 1
NWRIT = JJJ
WRITE(6,322)
322 FORMAT (1H ,20X,'AND')
WRITE(6,323)
323 FORMAT (1H+,20X,'___',/)
. GO TO 320
WRITE SECTION POR AUG,U4THS AND DIM.STHS
350 CONTINUE
WRITE(6,301)
IF (IAC.GT.0) GO TO 352
WRITE (6,351)
351 PORMAT (1HO,'TRITONE OR CIMINISHEL STH BETWEEN')
GO TO 310
352 WRITE(6,353)
353 PORMAT (1HO,'TRITONE OR DIMINISHED S5TH ASSUMING')
WRITE (6,303)
WRITE (6, 354)

354

355
390

398
399

66

FORMAT (1H ,'ACCIDENTAL LASTS THROUGH MEASURE')
WRITE (6,303)

WRITE (6,355)

FORMAT (18 , 12X, 'BETWEEN?')

GO TO 310

CONTINUE

WRITE (6,301)

CONTINUE

CONTINUE

Statement 210 subtracts one NOTECL from the other,
determining the interval between them. Thus:

INT = S5 (perfect Uth)
INT = 6 (augmented 4th or diminished 5th)
INT = 7 (perfect 5th)

(N.B. In the evaluation of NOTECL in the conversion program
(see Chapter II p), an accidental is assumed to last
through the measure, but PRECAC or SUGGAC are not altered to
reflect such an assumption,)

The statements at 250 check to see if the interval wvas
made perfect by the addition of a specified or editorial
accidental. If there are no accidentals it also checks to
see if the fifth or fourth calculated at 210 consists of the
pitch-classes B and P, if so, then one of the pitches must
have been altered by a prior accidental within the measure.

Similarly at 260 any tritone or diminished fifth
calculated at 210, except that between B and F, must be the
result of alteration by an accidental. If there is no
accidental with either of the notes then it must be the
result of a prior accidental within the measure.

(The pitch-class test at 250 and 260 assumes a key of C
major. If the key was P, the pitch-classes would have to be
altered to E and B-flat; if the key was G, to C and F-sharp,
etc.)

The write sections do not need explanation here. They
demonstrate well the ease with which identifying information
can be produced in M.I.R.

There now follovs a complete listing of the program and
a sample of the output.

PROGRAM TO FIND SIMULTANEOUSLY SOUNDING AUG. 4THS AND DIM. 5THS
SWITCHES TO PUT PREP, CAL AND NGENU IN "DUMMY MCDE"

anaon

67

ISPREP=0
ISCAL=0
ISNGEN=0
DIMENSION NMESNO (6),NLYNE (6) ,NNOTE (6),RDNC (6) ,NCL (6) ,NPRAC (6),
1 NSGAC(6),NOTLST (6)
DIMENSION DNCSAV (2)
DATA DNCSAV/'B ','F '/
1 SRITE(6,2) TITLE,SUBTIT
2 FORMAT (1H1,10X, 'SIMULTANEOUSLY SOUNDING AUG.4THS AND DIM.STHS',
1//,1X,11A4,//,4%,6A4,//)
SWITCH SET TO 1 POR EACH LINE WHEN LAST NOTE OF SECTION HAS BEEN REAI
DO 3 J = 1,NUMLYN
3 NOTLST(J) = 0

BLOCK 1

INITIALISE WITH LYNENO (=1)
100 LIN=LYNENO

LN=LIN

SAVE RECORD NUMBER GF NOTE IN LIN

NAT=NREC

SAVE ATTACK TIME OF NOTE IN LINE LIN

NATIN = AT(1)

NATNUM = AT (2)

NATDEN = AT(3)

SAVE RELEVANT INFORMATICN OF NOTE IN LINE LN
110 CONTINUE

NMESNO (LN) =MEASNO

NLYNE (LN) = LYNENO

NNOTE(LN) = NOTENO

RDNC (LN) = DNC

NCL (LN) = NOTECL

NPRAC (LN) = PRECAC
NSGAC (LN) = SOGGAC
IF (BARLIN .GE. 3) NOTLST(LN) = 1

INCREMENT LINE NUMBER BY 1

115 CONTINUE
LN = LN#1
WCONVERTS"™ LN IF GREATER THAN NUMLYN
IF (LN .GT. NUMLYN) LN = LN-NUMLYN
CHECK TO SEE IF ALL LINES HAVE BEEN EXAMINED.
IFP (LN .EQ. LIN) GO TO 120
PIND SIMULTANEOUS NCTE IN NEW LN
NDUMY1 = ATTACK(NATIN,NATNOM,NATLEN,LN)
GO TO 110

120 CONTINUE

BLOCK 2

C
C

68

DETERMINING INTERVALS

200

210

250

260

1260

261

JX=NUMLYN-1

DO 399 JJ = 1,JX

IP(NCL(JJ).EQ.14)GO TO 399

JY=J3+1

DO 398 JJJ = JY,NUMLYN

IFP(NCL(JJJ) .EQ.14)GO TO 398

INT=IABS (NCL(JJ)-NCL (JJJ))

IP(INT.EQ.5.0R.INT.EQ.7)GO TO 250

IF (INT.EQ.6) GO TO 260

GO TO 398

IAC=0

IP (NPRAC (JJ) .GT.0.0R.NSGAC(JJ).GT.0)GO T0300

IF (NPRAC(JJJ) .GT.0.CR.NSGAC (JJJ) .GT.0)GO TO 300

IP ((RDNC(JJ).NE.DNCSAV (1)) .AND. (RDNC(JJ).NE.DNCSAV(2)))GO TO 398
IP((RDNC (JJJ) . NE.DNCSAV (1)) . AND. (RDNC (JJJ) . NE.DNCSAV (2))) GOTO 398
IAC=1

GO TO 300

IAC = 0 .

IP ((RDNC (JJ) . NE.DNCSAV (1)) .RND. (RDNC(JJ).NE.DNCSAV(2)))GO TO- 1260
IP ((RDNC (JJJ) . NE.DNCSAV (1)) .AND. (RDNC (JJJ) . NE.DNCSAV (2)))GOTO 1260
GO TO 261

CONTINUE

IF ((NPRAC(JJ).NE.O) .OR. (NSGAC(JJ).NE.0)) GO TO 261

IF ((NPRAC (JJJ).NE.0) ,OR. (NSGAC(JJJ).NE.O)) GO TO 261

IAC=1

GO TO 350

BLOCK 3

WRITE SECTION POR CORRECTED 4THS AND STHS

300

301

302

1302
2302

310

303

CONTINUE

WRITE(6,301)

POR"AT (1x,'oooo-o.oootnoootoo.oo..ooo-ooo.ooo')
IFP (IAC .GT. 0) GO TO 1302

WRITE(6,302)

FORMAT (1HO,'CORRECTED PCURTH OR FIFTH BETWEEN')
GO TO 310

WRITE (6,2302)

FPORMAT (1HO, 'CORRECTED FOURTH OR PIPTH ASSUMING')
WRITE(6,303)

WRITE (6,354)

WRITE(6,303)

WRITE (6,355)

CONTINUE

WRITE (6,303)

PORMAT (1H+, ' ")

[eNeNeNe]

69

NPAIR = 1
NWRIT = JJ

320 CONTINUE
WRITE(6,321) NMESNO(NWRIT),NLYNE (NWRIT),NNOTE (NWNRIT),RDNC (NWRIT),
1 NCL(NWRIT),NSGAC (NWRIT),NPRAC (NWRIT)

321 PORMAT (/,6X,'MEASNO LYNENO NOTENO',/,6X,3I6,/,6X'DNC NOTECL SUGGA
1C PRECAC',/,7X,111,316,/)
IF (NPAIR .GT.1) GO TO 390
NPAIR = NPAIR + 1
NWRIT = JJJ
WRITE (6,322)

322 FORMAT (1H ,20X,'AND?)
WRITE (6,323)

323 FORMAT (1H+,20X,'___',/)
GO TO 320

WRITE SECTION POR AUG,UTHS AND DIM.STHS

350 CONTINUE
WRITE(6,301)

IF (IAC.GT.0) GO TO 352

WRITE (6,351)

351 FORMAT (1HO,'TRITONE OR CIMINISHEL STH BETWEEN')
GO TO 310

352 WRITE(6,353)

353 FORMAT (1HO,'TRITONE OR DIMINISHED 5TH ASSUMING')
WRITE (6,303)
WRITE (6, 354)

354 FORMAT (1H ,'ACCIDENTAL LASTS THROUGH MEASURE')
WRITE(6,303)
WRITE (6,355)

355 FORMAT(1H ,12X,'BETWEEN')
GO TO 310

390 CONTINUE
WRITE (6,301)

398 CONTINUE

399 CONTINOE

BLOCK 4

TEST TO SEE IF LAST NOTE OF SECTION IN EACH LYNE HAS BEEN READ
400 CONTINUE

DO 410 J = 1,NUMLYN

IF (NOTLST(J) .EQ.0) GC TO 420
410 CONTINUE

GO TO 460

RE-INITIALISE WITH NOTE IN LYNE LIN
420 CONTINUE

CALL TOCURN (NAT)

EXAMINES ALL LYNES FOR FIRST SUCCEEDING ATTACK POINT

70

CALL PINDFD (NDUMY2)
GO TO 100
C MOVE TO NEW SECTION
460 CONTINUE
CALL TOSECN (NSEC+1)

Cc CHECK TO SEE IF CURRENT SECTION IS LAST IN CURRENT COMPOSITION
IF (ENDC .GT. 0) GO TO 470
GO TO 1

C MOVE TO NEW MASS
470 CONTINUE
CALL TOCOMP(NFIL+1)

c CHECK TO SEE IF CURRENT CCHPOSITION IS LAST ON TAPE
IF (ENDF .GT. 0) GO TO 480
GO TO 1 :
480 STOP

END

71

"Nl -
oo | <
Hite ' m,.ru e *
) 'x.“ .
¢ . R .
LL" = dlll § I
le P © ”..” '
m -.L v
— . il
rlrr ._-.:.
M.av “m o o (Ml . | Kl
m m] . |Rh< RS
‘= 2 4l -
[}
o & & : X
L8 | .
— g I e
a & M i . M ..
M“W . . .
-MIA M o —-
.\\ I 4qlil = I
i< =
° bT r}.
/? o -
© 3 ;¥
£ 2 F i
s 4 & 2
-1

Insert 3

. . .
118
4 N . .
LK) i -
M .
Wil o '
LI X
WK . 3
dll * jelll 8 [PR
'
I . 111 .
HiT Al - Hiyl
rn m'] .
3 ' .
e Hile . .
» v
. [}
] e
H - . .
Hy & . = ®
11 N,)1 .
Wk T 'R
H . oW, 81 |
&l o il e * | 2
3 3 »
N4 m h | m X M Mv
'xv. N . .
MR il re
1w M
1 - i !
O Nl .
RH< n4 . ML
. AL-
WU '
il e L. . r .
N1l e h 1 8
HH e (MR R o
I
o
e rx... . Y ©
Al N T
. Ny n N4 "
< '3 3
H _.:; S N -ﬂ
56 e

= 1l - *HY 8
+ N “ e n.u
M .S i,
m.. 1 *)
0 M
Ar il - 1fe
HiR o.-’ Arn kil)
' N4 T Y hedd
. L]
N
—rﬁ . 343
HH d ML
R gl e)
BT 1IN
- . * .
g |
Wil 3 Rille H vﬂ. e 2
X .
MiL -
&l o He
toileld e
Bit| & IRH €
Ml .
Hll o = R .
s 3 &
Hisl § nl S it
112 !
HT$| oo
< .
: L ER
His .
o ! . -
i o . i
1 R GE |
xlx. ' .
LL‘
W
H1e) W B{ .
HH| . : 1)
T <] '
-l .
® Bl m ' ' S
ke
N . r

T
I _ [
tm ._ = €
2198 3 .
. rLA . .
H - H$]
’ l- ' .
xxT 0 A -y
sl + HiN) 4 '
N 1 ;v . I
1 B fn
2 s el
[N = Wil ey =
{JESRE U ,ﬁ: :
Nl .
. . I
Bl o [[6l] . It
ool R
n s (i o |lall
M HAl -t
; ‘ e
T L K j . ._
Lo
MY RS Hillw N
™ . N
wl|iN® K' X
e & N

08

SAMPLE PRINTOUT

SIMULTANEOUSLY SOUNDING AUG.4THS AND DIM.S5THS

MISSA L-HOMME ARME SUPER VOCES MUSICALES

KYRIE 1

09 5 5 0 0 5290 00 000 2800008V ECL 0 Ce DO

E

3 . 1 3

DNC NOTECL SUGGAC PRECAC
G 7 0 0

ND

MEASNO LYNENO NCTENO

3 2 6
DNC NOTECL SUGGAC PRECAC
C 1 1 0

TRITONE OR DIMINISHED 5TH ASSUMING
ACCIDENTAL LASTS THROUGH MEASURE
BETWEEN

MEASNO LYNENO NCTENO

3 1 4
DNC NOTECL SUGGAC PRECAC
G 7 0 0

AND
MEASNO LYNENO NGTENO
3 2 8
DNC NOTECL SUGGAC PRECAC
C 1 0 0

..‘.......Q.l.....‘.......‘......

.CQ........‘.....................

CORRECTED POURTH OR FIFTH BETWEEN

MEASNO LYNENO NCTENO

72

8 3 1
DNC NOTECL SUGGAC PRECAC
F 5 0 0

AND

MEASNO LYNENC NOTENO

8 4 1
DNC NOTECL SUGGAC PRECAC
B 10 0 2

L B N AR B BN B B BN BN BN B IR BE BN IR B BN BRI B BN I BN BN IR IR BN B N BN AN J

® 9 ® 08 5 0D 9O 8O0 OSSP O S PP SO BE S OO

CORRECTED POURTH OR FIPTH BETWEEN

MEASNO LYNENO NOTENO
8 3 1
DNC NOTECL SUGGAC PRECAC
F 5 0 0

AND
MEASNO LYNENO NOTZ=NO
8 y 1
DNC NOTECL SUGGAC PRECAC
B 10 0 2

® 5 98 0605 98 %S S0 S TS GG OO OSSN PSEDS

® © 0 5 9 0 0 5 5 S SO OO O DO PSSO OB e eSO DN

CORRECTED FOURTH OR FIFTH BETWEEN

MEASNO LYNENO NOTENO
8 3 1
DNC NOTECL SUGGAC PRECAC
F 5 0 0

AND

MEASNO LYNENO NCTENO
8 4 1
DNC NOTECL SUGGAC PRECAC
B 10 0 2

® 5 9 59 9 09 S0 000 90T SO LSNP SOEs e

® 9 9 O 9 S 00 09 0O S PO SN OSSO C eSO OIS PSS

CORRECTED FPOURTH OR FIFTH ASSUMING
ACCIDENTAL LASTS THRCUGH MEASURE

73

O...'...l'........".............

ETC.

BETWEEN

MEASNO LYNENO NCTENO
8 1 4
DNC NOTECL SUGGAC PRECAC
F 5 0 0

AND

MEASNO LYNENO NCTENO
8 4 2
DNC NOTECL SUGGAC PRECAC
B 10 0 0

74

75

SUGGESTIONS FOR M.I.R. USERS

Whenever a tape error message appears, check the tape
file by running some other program on it; or, re-run the
original program., This error 1is usually caused by some
temporary malfunction of the hardvware or system and is not
the fault of your program.

Save time by storing information whenever possible, to
cut down on retrieval operations.

¥henever a program is such that it will eventually come
to the end of a section or a lyne, insert some kind of check
after the use of a pertinent retrieval operation to test the
status of the current note. Otherwise one may get into a
loop at the last note which will re-occur as the current
note,

Some retrieval operaticns go from section to section
without any indication except the change in the value of
NSEC. This should te tested, or the value of BARLIN should
be examined.

Use fractional values when examining durations or
attack-times. The use of floating-point numbers or their
equivalents 1is more trouble than it'!s vworth, The
subprograms which handle fractions will be handy for this
purpose.

Any program designed by the user should be tried out on
test data first. This data should be such as to cause every
logical route through the program to be executed, not
counting those which would halt the operation of the
program. Such test data can be converted as the last file
on the input tape normally used, thus avoiding extensive
rearrangement of the M.I.R. program's job control cards,

76

APPENDIX 1A

THE CORRECTION PROCESS

1St program

I.M.L. data on tape 503 ----> CORRECTED ----> tape 158
]
{
Data cards <-=----==-v---- CARDS
1st card, column 1 - 3:

A number representing the number of files to be
transmitted (note entire contents of tape must te
transferred, even if only one file is being updated).

Successive cards:
A file identification card containing

A) asterisks in columns 1 - 4

B) file number in 5 - 7

C) SW1 setting in 8 - 10; (punch 000 or 001)
1 = Resequence file
0 = Do not resequence file

D) SW2 in 11 - 13
1 = Punch new deck
0 = Do not punch new deck

E) SW3 in 14 - 16
1 = Print entire file
0 = Print only correction cards, underscored.

F) SwW4 in 17 - 19

1 = Delete entire file before inserting
correction cards
0 = Merge correction cards in already existing
file

2nd program

Updated I.M.,L. on 158 ----> restore to ----> 503

One data card similar to 1st data card of the previous
program

77

APPENDIX 1B

Coding of Triplets, etc., in I.NM.L.

The procedure in I.M.L. for coding groups of notes
which subdivide metric values by a number different from
that provided by norral notation ("groupettes"), is similar
to that for triplets. Instead of a 3, the parentheses
following the + sign contain a value n, where n indicates
the number of subdivisons into which a particular metric
span is subdivided.

The conversion frogram translates the following numbers
into the stipulated proportions. (Any other single number
for the representation of a groupette will result in an
error in calculating the durations for the note involved.)

Groupette number Proportion

3 (Triplet) 3 in the time of 2
4 4 in the time of 3
S 5 " 4

6 6 n 4
7 7 " 6
8 8 " 6

9 9 " 8
10 10 n 8
11 1 " 8
12 12 " 8
13 13 " 12
14 14 " 12
18 15 " 12
16 16 " 12

Groupettes may, however, be specified with more
precision in the form:
+(n:m) o o o +

where n groupette divisons in the time of m divisons is
meant. Thus the factor m/n is the relative value of this
groupette's notes as opposed to their value vwere there no
groupette indicated at this point,

78

Nested groupettes, for example:

introduce a complication. Within any groupette field
another field may be begun and ended. The example would be
coded:

+(5) L d L] L * +(3) L 4 L] L] * L] L] L] *

Por clarity, nested groupettes may be 1indicated by a
different number of + symbols, for example:

+‘5) L] L L] * ++(3) L] L J L] +* L d L] L] ’
but this is not required.

Simultaneous terminations (or beginnings) are indicated
by the letter X in the following manner. Given the case:

| === S=-memmm e |
R 3-mmmmmm-- !
the representation would be,
+(5) o o o s +(3) e o o o +X+
Given the case:
=== R |

the representation would be.

+(7:4) X+ (5:3) e o o o + c o o +

MODULE A

MAIN

PROGRHM

BCD

ENDTS1
ENDTS2

ENTRO1

ENTRO2
ENTRO3
ENTROU4
ENTROL
ENTRON
ENTéOC
PRINTR

CONSUB

TABCOM
ENSTRU

ENSTRN

79

APPENDIX 2A
I.M.L. CONVERSION PROGRAM MODULES

Handles processing of the I.M.L. data-stream into
meaningful parsings which are then analyzed to
produce information for the M.I.R. registers via
appropriate subroutines.

Contains variables wvhich are set by the user to
indicate which version of the conversion program
is required.

Translates 026 keypunched material into 029
characters.

Tests for end of input card image,
Tests for end of printed staff.

Stores reformatted information about ties,
triplets and other miscellaneous information.

Same for rhythmic information.

Same for pitch information,

Same for text.

Same for lyne and measure number.

Same for measure nurber alone.

Same for comments.

Prints arrays containing reformatted I.M.L.

Identifies analysable comments as LYNE comment, or
REDUCE commrent, or TITLE comment, etc.

Helps set up calls to comment-analysing routines,
Analyses LYNE comments.

Handles (in the future, maybe) transposing

80

instruments,

(Rhythmic checking portion)

ENTTSV
Calculates time-signature registers.
ENTRET
Calculates RETIME information.,
ENDRED }
Calculates REDUCE information.,
ENTRHY
Isolates rhythmic information.
CALRHY
Analyses rhythmic information.
TRGPN
Calculates triplet registers.
FRALCD
Finds lowest common divisor and reduces fractions.
FRACAD
Adds fractions.
FRAMPY
Multiplies fractions,
MODULE B
ENTPIC
Isolates pitch-information.
ENTUNT
Sets flag to interpret the following data as
"untucked™, (from UNTUCK comment).
ENTTUOC
Sets flag to interpret the following data as
"tucked", (from TUCK comment).
ENTCLF
Calculates clef-register.
ENTEXT
Processes text.
CALPIC
Calcnlates pitch-registers,
ENTKEY
Processes key-signature information,
ENTPC
Calculates key-signature accidentals from
key-name.
NUMPIC

Translates diatonic pitch characters into

NTCTAB

STATAB

NSMTAB

ENTNOT

MODULE C

81

numerical values.

Translates "untucked" diatonic values 1into real
ones,

Determines staff position number.
Finds absolute semitone value number,

Processes noteblock information; keeps track of
pitch-values lasting for more than one note,

(Prints out lyne and note registers)

NT1

NT2

NT3
NTY
NTS
NT6
NT7

TRAHED

MODULE D

Prints MEASNO LYNENC NOTENO NREGCL NOTECL NTIEND.

Prints NSEMIT DNC NBARCT NPRECA NSTAFP NDURAT
NDOTND

Prints MAXLYN NGRPNO NSUGGA NBRACK NPHMRK NSPECN.
Prints text.

Prints measure-attack time.

Prints system-attack time,

Prints composition-attack time.

Sets up HELCBLK information in AHED,

(Tape-writing routines)

WRIHED

WRITAL

WRILYN

WRISYS

NT8

Writes HEDELK information onto tape.
Writes TALBLK inforration onto tape.
Writes LYNELK onto tape.

Dumnmy.

Writes NOTELK onto tape.

82 .

JIOEND

Writes ENDBLK record onto tape (from FILE END
statement).

Subroutine PROGRM contains two variables which are set

by the user, The first variable, NPROG can be set to one of
three values:

NPROG = 1

This will call the tape-writing version.
NPROG = 2

This will call the reformatting version.
NPROG = 3

This will call the register-printout version.

The second variable NFLCOM 1is only altered for the
tape-writing version (for the reformatting and
register-printout versions it should be set to 0). For the
tape-writing version NFLCOM will become NFIL of the Label
register and should be set to the "serial number of the
current composition'. Because of the use of subroutine

PROGRM in this way, only one file can be converted at a
time.

83

APPENDIX 2B
Messages in the Conversion program

Generated in MAIN
PUNCTUATION MISSING ON CARD X
Some unexpected character has occurred in the
I.M.L. character stream.

Erroneous information for pitch or duration which
this character replaces.

RHYTHMIC MISTAKE
The duration of one measure of masic does not
correspond to the time-signature.

MEASURE-NUMBER EXCEEDS THREE DIGITS
Program halts.

ERROR ON CARD X FERTAINING TO TRIPLETS OR TIES
Missing or unexpected information when processing
a triplet or tie.

TOO MANY LYNES, LYNENO= X
More than 99 lynes are not allowed, program halts.

Generated in ENDIS1
INPUT OUT OF SEQUENCE (card number)
Sequence-number on card was not greater than that
of the previous card in the same composition,
program halts. Note that the FILE END card must
be in sequence with the last <card of the
composition which it follows,

END OF JOB
Normal termination of a reformatting or conversion
job has occurred.

Generated in ENSTRU
LYNE INFO MISSING AROUND CARD X
Information in the lyne comment is not specified
correctly, program halts. v

84

Generated in CALRHY
IMPOSSIBLE RHYTHM (card image)
Numerical symbols for rhythmic indication are not
possible ones.

Generated in ENTTSV
ERROR IN TIME~-SIGNATURE (card image)
Incorrectly specified time-signature (missing
parentheses, or /, or- symbols) -- check to see
that only cne space occurs after keyword.

TOO MANY SYMBOLS IN TIME-SIGNATURE (card image)
No more than 4 characters (not including
parentheses) can define a symbolic time-signature.

TIME-SIGNATURE ERROP (card image)
A "fractional" time-signature has non-numeric
characters in it (besides / or -).

Generated in ENTRET
TOO MANY DIGITS IN RETIME NUMERATOR (card image)
Check for missing =. Check for missing spaces or
erroneous spaces.

TOO MANY DIGITS IN RZSTIME DENOMINATOR (card image)
Check for missing /. Check for missing spaces or
erroneous spaces.

Generated in ENDRED
MISSING HYPHEN IN REDUCE COMMENT (card image)

TOO MANY DIGITS IN REDUCE NUMERATOR (card image)
Check for rissing =, Check for missing spaces or
erroneous spaces.

TOO MANY DIGITS IN REDUCE DENOMINATOR (card image)
Check for missing /. Check for missing spaces or
erroneous spaces.,

MISSING DENOMINATOR IN RELUCE STATEMENT (card image)
Check for missing spaces or erroneous spaces.

Generated in PRALCD
NEGATIVE DENCMINATOR (denominator)

85

Denominator of fraction being reduced to lowest
terms is either zero or negative. Check for other
errors in the data.

ERROR IN REDUCING FRACTION
More than 100 steps in the Euclidian algorithm
vere needed to find the lowest common denominator.
Try to find other errors in the data.

Generated in NUMPIC
ERRONEOUS DIATCNIC PITCH = X (card image)
Argument DIA not valid.

Generated in ENTPC
KEYREP ERROR (card image)
First character not A through G or second
chara;ter not S or T.

Generated in ENTKEY
KEYSIG ERROR (card image)
Second character not S, T, or blank.

Generated in ENTNOT
NGRPNO ERROR (triplet numter)
Missing triplet information.

Generated in ENTKEY
KEY INFORMATION ERROR (card image)
Missing space after keyword.

KEYSIG INFO ERROR (card image)
Letter name not A through G.

Generated in CALPIC
MISSING ACCIDENTAL (card image)
Suggested accidental symbols not S, T, or N,

Generated in NTCTAB, STATAB, NSMTAB
ERRONEOUS CLEF NUMBER = X
Clef inforration erroneous or missing.

86

Generated in ENTEXT

TEXT TOO LCNG (card image)
No more than 16 characters can be processed,

Generated in ENTCLF
CLEF INFO MISSING (card image)
Space missing after keyword.

ERRONEOUS CLEF INFORMATION (card image)
First character not C F G L or U and 2nd character

of C-clef indication not 1 2 3 or 4; or 2nd
character of F-clef indication not 3, 4, 5, or

blank.

87

APPENDIX 2C

Updating M.I.R. tapes

When the TI.M.L. data for a composition are corrected
the M.I.R. input tape has to te corrected as well, Since
there is no way of correcting individual registers on the
tape all the music bearing a single file-number has to be
reconverted.

The tape-numbers refer to those at Princeton, and will
obviously vary at other installations.

Tape Contents
0503
I.M.L. data of twenty masses, each as a separate
file.
3451

M.I.R. 1input tape of twenty masses each as a
separate file,

0723
M.I.R. input tape of twenty masses combined as a
single file.

0158 And 2186
Scratch tapes.

There are four progrars associated with the updating
procedure.

MIRP1 (The Conversion Program)
Converts file of 0503 and puts output onto file of
0158.

MIBP2
Merges file(s) of (€158 with o0l1ld file(s) of 3451
and puts output onto 2186,

MIRP3
Copies 2186 onto 3451,

MIRPY
Copies 2186 onto 0723 and combines the separate

88

files as a single file.

Data cards required by the programs:

MIRP1
The use of subroutine PROGRM for this program is
explained in Appendix 2A.

MIRP2

This program requires twenty pairs of data cards. The
first card of each pair indicates the tape-number (normally
2186) and file-number that the file indicated on the
succeeding card will be transferred to. Thus 1if files
1 - 2: 4 - 20 of 3451 are to te merged with a single file on
0158 (which already contains a corrected version of mass 3),
the data cards will be arranged as follows.

card columns 1 4 7

2186 01
3451 01
2186 02
3451 02
2186 03
0158 01
2186 04
3451 04
2186 05
2186 20
3451 20

The data cards are read in I4,2X,I2 format.

MIRP3

This program requires a single data card vhich contains
the total number of files that are to be copied from 2186 to
3451 {(normally 20), the first three columns of the data card
are read in I3 format.)

MIRPY

Requires no data card.

89

30

APPENDIX 32
RECORD FORMAT FOR M.I.R. PROGRAM INPUT ON TAPE OR DISK

HEDBLK (2 PARTS)

PART 1

1 2 3 4

| HEDB | NFIL | NSEC | NREC |

5 12

i : : : COMEOSER : : : { 32 BYTE:

13

| : : : : ¢+ TITLE : : : :
23
: | 44 BYTES

24 29

| : : SUBTITLE : : |24 BYTES

30 37

| : 2 : AUTHOR : : : | 32 BYTE

-———-_——---—--o——-—-——-------———---_-_-—-----o---—————---------_

+ 3 Unused words = 40 word record written

91

PART 2

1 2 3 4

| HEDB | NFIL | NSEC | NREC |

5 10

1 : : PUBLISHER : : | 24 BYTES
11 14

I : VACANT : | 16 BYTES

15 20

i : : EDITOR : : | 24 BYTES
21 27

i : : KEYPUNCHER : : { 28 BYTES
28 31

! : VACANT : | 16 BYTES

32 33

I VACANT | 8 BYTES

34 35

| VACANT | 8 BYTES

36 40

WD . —— D D D —— - > - —— - - - —— - ———— - ——— —————— -

| : ¢ARRANGER :] 20 BYTES

R e I I Ltk i ———

92

LYNBLK

1 2 3 4

] LYNB }] NFIL | NSEC | NREC |

5

} CLEF |

6 12
§ : : s KEYPC : : : :
13 14 15 17 18

§{ ITSVNM| ITSVDN| TSNUM | TSDEN |

19 21 23

| REPKEY { :INSTRU : |

24 30
| H H s SIGKEY: : : :

- D D D . - D S - - W - —— - — - —— - —— - - —— - ——— o —

+ 10 Onused words = 40 word record written

93

NOTBLK

1 2 3 4

}] NOTB | NFIL | NSEC | NREC

5 6 7 8 9 10 11

- —— - - —— - - —— - = W P - —— - - G > = . — . - - — - - - - -

|HMEASNO |LYNENO |NOTENO |NOTECL |REGSTR |SEMITO |PRECAC |

AP D D D W D - - - - - — - - —— - — - D D W =D D -, -~ - e

D AD A - .- - - ———— - - > - ————————— ——— -0 > —— -~ -

- - —— - - D - — - —— - — — - - ——— W w———

- ———— - —_— . ————— A, - - . e . - - - .. == -

{ BRACK |SPECSN |VACANT (MESINT |MESNUM |MESDEN |SYSINT |

D - D = - W —— - - ———— - - - — - -k W wn G wm e W -

- - . D - ————— - —— —-———— - - —————— —_—— = - > =

. — ——— D D = - - - —— - —— - —————————— - —— - — e — - =

D D T D D D WD D D - - - - - - - —-—_—— - —————— - - i = ————

D M D Ar D - S - — - ————— - — - - —— . —— b P WP WD we W we Wy En - . - - -

"

+ 1 Unused word 40 word record written

94

APPENDIX 3B

Messages in the M.I.R. program subprograms

Generated in READBK
IMPOSSIBLE RECORD
The 1label for a Y.I.R. tape record is not one

allowed, program halts.

Generated in TPGET
IND = (code) ERROR AFTER RECORD (record label)
The code given is that of the TPCHECK routine (see
Appendix 4), program halts.

Generatad in TOSECT
(subtitle) CANNOT BE FOUND
NPSEC is set to 1: no section bearing the name
called for.

Generated in TOSECN
MISSING SECTION
Tape not generated correctly, program halts.

Generated in TOTITL _
(title) CANNOT BE FOUND
NFCOM is set to 1: no composition on this tape
file bearing the name called for.

Generated in TOCOMP
MISSING PILE
Search for a composition by number failed; either
number too large or tape incorrectly generated,
program halts.

95

APPENDIX 4

Routines in Machine Language
Written by Hale Trotter, used in the I.M.L.-M.I.R. - Portran
system

Input-Output routines for the M,I.R. system.

A subroutine package has been written which allows a
Fortran program to exercise almost complete direct control
over a tape unit. For example: it can be used to pass over
a bad spot on a tape and to read the records which follow
the bad spot. 1In some applications it can yield improved
efficiency, since it bypasses some of the system overhead
involved in standard Fortran I/0 operations, Its
disadvantage is that it provides no automatic blocking or
€rror recovery or positioning features; these must be
programmed in detail by the user.

REAL * 8 CA (14)

For each tape to be used under control of
these routines, the user must provide an array of
14 REAL x* 8 words. This array appears as an
argument in every subroutine call, and serves to
identify the tape to be used. The routines may
thus be used with several tapes at once. In the
following calling sequences, CA is used for the
name of the control array, and it is asssumed that
a REAL * 8 CA(14) statement has appeared in the
program,

CALL TPOPEN (CA,NAME)

This call must be executed before any of the
other routines can be used. It may be a Hollerith
argqument., Blanks must be added at the end if
necessary to make a full 8 characters. The call
opens the dataset and initialises CA with control
information: DCB, I0B, and Channel Program -- used
by other routines.

CALL TPREAD (CA,AREA,NBYTES)

This <call initiates a reading of the next
physical record. The record is read into the
array AREA, and NBYTES is an integer specifying
the maximum number of bytes to be read. (If the
record contains more than this number of bytes,

96

the excess is ignored.) Any call to TPREAD must
be followed by a call of TPCHEK before the data
read is used, or any other operation is done on
the same tape.

TPCHECK (CA,IND,LEN)
This call checks the completion of a previous
read ot write, If the previous operation was a
read, LEN is set to the number of bytes actually
r ead (i.e., the smaller of NBYTES and the
physical-record-length)., IND is set to =zero if
the operation was completed normally.

Other possible values are:

Tape Mark (EOF) encountered while reading, or
20F encountered while writing,

Data check (bad tape); data may be in error.
Usually worth backspacing and retrying a few
times. A data check while writing indicates a
bad spot on the tape; the IBM manual suggests
backspacing, erasing a section using TPWGAP
and retrying the write procedure.

Error condition; no point in retrying.
Commonest causes are running off the end of
the tape, or trying to write on a
file-protected tape.

It is theoretically possible for more than
one condition to occur at once; in this case the

codes are add=d. Por example, if a data check
occurs as a tape-mark is read, a code of 5 will be
set.

CALL TPBKSP (CA,IND)
Backspace one record (a tape mark counts as a
record). No need to call TPCHEK afterwards.

TPZX

TPEINT

&§LOC
§LOC

§LOC
§LOC

AESYSND

TPZILCH

LR BE BE BE BE R B B

ENTER

ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER

TITLE

MACRO

ENTER &

ENTRY

USING

B

DC

DC

B

DROP

MEND

MACRO

UTIL

MVI

B

MEND

MACRO

TEST

™

BZ

0I

X

MEND
START

ENTER

OPEN IS
(E.G.)
PRINT
CLOS

READ
WRIT
CHEK
TYPE
BKSP
BKFL
SKPL

Listing of Source Deck

'TAPE HANDLER--MODIFIED FOR 3-BYTE RECORD LENGTHS!

INT LM&EINT IS EXTERNAL ENTRY
TP&EINT

*,15

COMSAYV GOCTO COMMON ENTRY

Xxto7? BYTE OUNT

CL7'TPSINT? AND ENTRY POINT NAME
§INT AND BRANCH TO REAL ENTRY
15

&CODE

UCCW,X!%5CODE' SET UP CHANNEL OPCODE
UTIL BRANCH TO COMMON ROUTINE
&BYTE,&MASK,&EM0D

EBYTE,X!'&MASK!

A&ESYSNDX

ARG2+3,6MO0D OR IN SIGNAL BIT

DS 04

OPEN CALL LMOPEN(ID,'DDDDNAME!?) WHERE

DDDDNAME IS 8-CHARACTER DDNAME.
(PAD WITH BLANKS IF NECESSARY-- M U S T
BE B I G HT CHARACTERS.) THE DATASET
IS OPENED, AND 1ID SET TO A MNAGIC VALUE
USED TO REFER TO THIS TAPE IN ALL OTHER
UTILITY CALLS (MORE THAN ONE TAPE MAY
BE USED, WITH DIFFERENT 1ID'S.)

NORMALLY DONE FOR INPUT; TIP A THIRD ARGUMENT IS GIVEN

IN CALL TPOPEN(ID,DDNANME,O) OPEN WILL BE FOR OUTPOT

NOGEN

CALL LMCLOS(ID) TO CLOSE DATASET. TAPE WILL REWIND IS

DISP=DELETE WAS SPECIFIED ON DD CARD, WILL UNLOAD

IF DISP=KEEP WAS SPECIFIED.

CALL TPREAD(ID,AREA,NBYTES)

CALL TPWRIT(ID,AREA,NBYTES)

CALL TPCHEK(ID,IND,LZEN)

CALL TPTYPE(ID,ITYPE)

CALL LMBKSP(ID,IND) TO BACKSPACE ONE RECORD

CALL LMBKFL(ID,IND) TO BACK ONE FILE

CALL LMSKFL(ID,IND) TO SKIP ONE FILE FORWARD

ENTER
ENTER
ENTER

LR K 2R BK BE B 4

ENTER
ENTER

COMSAYV

BASE

SAVEA
ARG1
ARG2
ARG3
ARGY

ECB
TIOBASE
IQOFLG
IOSNS
IOECB
IoCSsw
I0Cp
I0DCB

UcCcw
cCcw2
LIOB
JFCB
JEXLST

98

WGAP CALL LMWGAP(ID,IND) TO WRITE GAP

WEOF CALL LMWEOF (ID,IND) TO WRITE END-OF-FILE (TAPE MARK)
REWD CALL LMREWD(ID,IND) TO REWIND TAPE

IND = 1 MEANS END-OF-PILE ON A READ OPERATION

WRITE AFTER END-OF-TAPE, ON WRITE OPERATION
MEANS BACK MOTION AT LOAD-POINT
DATA CHECK (REDUNDANCY, NOISE, ETC.)
NOT READY, OR WRITE ON FILE-PROTECTED TAP
OR ANY OF A NUMBER OP MACHINE ERRORS.
SIMULTANEOUS CONDITIONS ARE CODEC AS SUM OF INDIVIDUAL CODES

o £sN

GETHM CALL TPGETM(IC,MODE,DZENS)
SETH CALL TPSETM(ID,MODE,DENS)
LTORG

PRINT GEN

USING IHADCB,2 SET DSECT BASES

USING ARG2,3
USING ARG3,U
USING ARGH,5

STH 14,12,12(13) SAVE ALL

BALR 12,0 SET 12 AS BASE

USING *,12

LR 2,13 SET UP SAVEAREA

LA 13,SAVEA

ST 13,8(2) AND POINTERS

ST 2,4(13) BACK

LM 2,5,0(1) PICK UP ARGUMENT ADDRESSES

B 12(0,15) BRANCH TO ENTRY-POINT BRANCH
DS 18F SAVEAREA

DSECT

DSECT

DSECT

DSECT

DCBD DSORG=PS,DEVD=TA

ORG IHADCB+60

DS F EVENT CONTROL BLOCK

DS 0D

DS 2CL1 FLAGS

DS 2CL1 SENSE BYTES

DS F ECB ADDR

DS D CSd (PIRST BYTE IS FLAGS)
DS F CHANNEL PROGRAM ADDRESS

DS F DCB ADDRESS

DS 2F RESERVED?

DS D FIRST WORD OF CHANNEL PROGRAM
DS D SECOND WORD OF CHANNEL PROGRAM
EQU *-IHADCB T
DS 22D JFCB AREA

DS F ADDRESS OF JFCB AREA

JFCBVOL EQU
JFCBVP EQU
JFCBLTYP EQU
TPZILCH CSECT
TYPE L
L
LA
™™
BZ
LA
TAPE9 ST
B
GETM MvVC
MVC
B
SETHM MvC
MyvC
B
OPEN DS
XC
MvC
Mvi
MvC
ST
LA
ST
NVI
LTR
BP
QOPEN
B
ROPEN DS
OPEN
POPEN D3
LTER
BZ
MVC
CALL
ABEND
OPERR DC
ERDDN DC
bDC
OPENOK DS

MVC
MvcC
NI
NI

JFCB+118
JFCB+77
JFCB+66

7,DCBDEBAD
7,32 (7)

8,9 (0)
17(7) , X801
TAPE9
8,7(0)
8,ARG2
EXIT

VOLUME S
BIT X'80
«es1 000
BACK TO
LOAD DE
LOAD UC
ASSUME 9
TEST O-
SKIP IF
ELSE SET
STORE RE

ARG2 (1) ,DCBTRTCH

ARG3 (1) ,DCBDEN
EXIT

99

ERIAL NUMBERS
' ON MEANS VOL.LAB.PROC.
0 POR BLP
REALITY
B ADDRESS
B ADDRESS
-TRACK TAPE
BIT OF BYTE 2 OF UCBTYP
9-~TRACK
7
SULT

MOVE TRTCH BYTE TOJ ARG
MOVE DENSITY BYTE TO AR

DCBTRTCH,ARG2 MOVE ARGUMENT TO TRTCH BYTE

DCBDEN,ARG3
EXIT

0H

IHADCB (LIOB),I
DCBDDNAM,ARG2
DCBDSORG,X'02!

MOVE ARG

HADCB
ENTER
MARK

DCBOFLGS (4) ,IDCBF SET

2,I0DCB
0,ECB

0,I0ECB
IOFLG,X'C2!
3,3

ROPEN

((2))

POPEN

OH

((2), (OUTPUT))
0H

15,15

OPENOK

ERDDN, DCBDDNAM
FERROR, (OPERR)
333

C' PAILURE TO
CL8'2DDNAME?!

AND DCB
AND

ECB ADDR
MARK FOR
WAS SECO
IF NOT,
OPEN FOR

UMENT TO DENSITY BYTE

CLEAR AREA
DDNANME
AS PHYSICAL SEQUENTIAL
OTHER FLAGS
ADDR

CHAINING AND UNRELATED P
ND ARGUMENT THE LAST ONE?
OPEN FOR OUTPUT

INPUT

OPEN FOR OUTPUT

REST RET
AND CONT
ELSE S
PRINT
AND DIE
OPEN ?
REP

URN CODE (I.E. TEST IT)
INUE IF ZERO
ET UP ERROR MESSAGE
ERROR MESSAGE
(NO DUMP)

START OFP ERROR MES
LACED BY DDNAME

C', CHECK POR MISSING OR INCORRECT DD CARD.
BRANCH HERE IF NO OPEN ERROR

0H

7,DCBDEBAD
DCBTRTCH,32(7)
DCBDEN,32(7)
DCBTRTCH,X'3B!
DCBDEN,X'C3!'

GET DEB

AND THE MODESET BYTE
BOTH PLACES

AND SEPARATE

THE PUNCTIONS

REQ'D

G

ROG

SAGE

100

MVI UcCCw+7,1 WITH A COUNT OF 1
MVI CCW2+4,X*20* SET SLI BITS IN CCH2
MVI CCW2+7,1 AND A COONT OF 1
LA 0,0CCW GET THE CHANNEL PROGRAM ADDRESS
ST 0,IOoCP AND PUT IT AWAY
B EXIT .
IDCBFP DC X102 POR DCBOLFLGS
DC X*0C*' DCBIFLG (SET TO EVADE SUPVR ERROR RTS)
DC X'poos! DCBMACR FOR EXCP, 0 APP, 5 WORD DEVD
CLOsS CLOSE ((2))
B EXIT AND GET OUT
WRIT ST 3,CCu2 PLANT ADDRESS
MVI CCW2,1 AND OP CODE
B RW
READ ST 3,CCwW2 PLANT ADDRESS
MVI CCwW2,2 AND OP CODE
RW MVC CCW2+5(3) ,ARG3+1 MOVE IN 3-BYTE COUNT
MVC UCCW (1) ,DCBTRTCH SET MODE
ocC UCCW (1) ,DCBDEN SWITCH
MvI UCCW+4,X*'40' SET COMMAND CHAIN BIT ‘
NI ECB,0 ZERO WAIT AND COMPLETE BITS FOR LUCK
EXCP IOBASE GO
B EXIT BUT DON'T WAIT FOR IT
BKSP UTIL 27 BACKSPACE
PRINT NOGEN
BKPL UTIL 2F BACKFILE
SKPL UTIL 3F SKIP FILE
WGAP UOTIL 17 WRITE GAP
WEOP UTIL 1P WRITE EOF
REWD UTIL 07 REWIND
PRINT GEN
UTILB DS 0H
UTIL DS 0H
NI ECB, 0 ZERO WAIT AND COMPLETE BITS FOR LUCK
MVI UCCW+4,X'20' SET SLI BITS IN UCCW
MVI ccw2,0 CANCEL OPCODE, SO LENGTH WON'T BE CALCULTT
EXCP IOBASE GCGOGOo
WAIT ECB=ECB WAIT FOR CHANNEL END
MVI UCCW,X'CB!? SET NO-OP
NI FCB,0 ZERO WAIT AND COMPLETE BITS
EXCP IOBASE ISSUE THE NO-OP (AND WAIT FOR DEVICE END)
CHEK DS O0R
TPCH M ECB, X' 40 CHECK IF WAIT NEEDED
BNZ NOWAIT SKIP IF PROGRAM ALREADY COMPLETED
WAIT ECB=ECB
NOWAIT XC ARG2(4) ,ARG2 <CLEAR INDICATOR WORD
CLI CCw2,2 TEST FOR A READ OPERATION
BNE NOLENG IP NOT, SKIP LENGTH CALULATION

101

L 0,CCW2+4 GET ORIGINAL COUNT
S 0,I0CSHW+4 MINUS FINAL COUNT
SLL 0,8 AND TAKE RESULT
SRL 0,8 MODULO 2%%24
ST 0,ARG3 AND STORE RESULT
NOLENG DS OH
TEST IOCSW+4,01,1 UNIT EXCEPTION
TM IOCSW+4,02 UNIT CHECK
B2 EXIT SKTP IF NO STATUS
TEST IOSNS+1,08,2 LCAD-POINT
TEST IOSNS+1,80,4 NGISE ON WRITE OR SKIP OPERATION
TEST I0SNS,08,4 DATA CHECK
TEST IOSNS,F7,8 ANYTHING IN BYTE O EXCEPT DATA CHECK
EXIT L 13,4(13)
*WHAT ABOUT RETURN INDICATOR BYTE2222?
LM 14,12,12(13)
SR 15,15 0 FOR RETURN CODE
BR 14 GO BACK

END

102

Character-examination routines used in the conversion

program, and available for use in the M.I.R. user program

INTEGER PUNCTION LOOK(A,N,LOC,INIT,NEXT,R)

Input parameters

A string (e.qg. LOGICAL * 1 array)

N integer - 1length of A in bytes

LoC INTEGER - scan begins at A (LOC)
Operation

Initial blanks are skipped. Scan looks for a
number in I, F, E, or D format (decimal point
required with E or D, no blanks allowed within a
number) . If first non-blank character is a
letter, scan continues over all consecutive
letters or digits, stopping at first blank or
special character. Otherwise scan takes single
character only.

Output values

LOOK = 0
if remainder of string is blank. 1In this case
values of INIT, NEXT, R are meaningless.

LOOK = 1
If I-format number is found.

LOOK = 2
If P-, E-, or D-format number is found,

LOOK = 3
If E-, or D-format number found with exponent

positive and greater than 72.

LOOK = -1
If letter followed by 1letters and digits
found.

LOOK = -2

If special character found,

INIT INTEGER
A(INIT) is first non-blank found.

NEXT

Subroutine CHL

103

INTEGER
A(NEXT) is first character not covered in scan
(NEXT - INIT gives length of substring found).

REAL * 8
Value of number found (in REAL * 8 form) if
LOOK = 1 or 2.
0.0 If LOOK = 3,
String found, truncated or padded with blanks
on right to make 8 characters, if LOOK = -1,
Cleared to 0 with character found inserted in
4th byte (so integer arithmetic may be done on
1st half of) if LOOK = -2.

JC (CHAR,STRING,N,LOC)

Input parameters

CHAR

STRI

Single character (LOGICAL * 1 or
Hollerith)

NG
Character string (LOGICAL * 1 array or
Hollerith)

INTEGER - length of STRING in bytes

Output parameter

LOC

Set to location of first occurrence of
CHAR 1in STRING, or to N+1 if CHAR does
not occur in STRING.

104

Listing of Source Deck

LUKC TITLE 'SCANNER AND SEAKRCHER! LOOK
*INTEGER FUNCTION LOOK(A,N,LOC,INIT,NEXT,R)
*

*INPUT PARAMETERS

* a STRING (E.G., LOGICAL*1 ARRAY)

* N INTEGER LENGTH OF A 1IN BYTES
* LocC INTEGER SCAN BEGINS AT A (LOC)
*OPERATION

INITIAL BLANKS ARE SKIPPED. SCAN LOOKS FOR A NUMBER IN
I,F,E, OR D FORMAT (DECIMAL POINT REQUIRED WITH E OR D v
NO BLANKS ALLOWED WITHIN A NUMBER). IF PIRST NON-BLANK
CHARACTER IS 2 LETTER, SCAN CONTINUES OVER ALL CONSECUTIVE
LETTERS OR DIGITS, STOPPING AT FIRST BLANK OR SPECIAL
CHARACTER., OTHERWISE SCAN TAKES SINGLE CHARACTER ONLY.
OUTPUT VALUES
LOOK =0 IF REMAINDER OF STRING IS BLANK. 1IN THIS CASE
VALUES OF INIT,NEXT,R ARE MEANINGLESS.
1 IF TI-FORMAT NUMBER POUND
2 I¥ F-,E-, OR D-FORMAT NUMBER FOUND
3 IF E- OR D-FORMAT NUMBER FOUND WITH EXPONENT
POSITIVE AND GREATER THAN 72
-1 IF LETTER FOLLOWED BY LETTERS AND DIGITS FOUND
-2 IF SPECIAL CHARACTER POUND,

INIT INTEGER A(INIT) IS FIRST NON-BLANK POUND

NEXT INTEGER A (NEXT) IS PIRST CHAR NOT COVERED IN SCA!
(NEXT - INIT GIVES LENGTH OF SUBSTRING FOUND)

R REAL*8 VALUE OF NUMBER POUND (IN REAL*8 FORM) IF

LCOK = 1 OR 2 .

0.0 IF LOOK = 3,

STRING FOUND, TRUNCATED OR PADDED WITH
BLANKS ON RIGHT TO MAKE 8 CHARS,

IF LOOK = -1,

CLEARED TO € WITH CHAR FOUND INSERTED IN
UTH BYTE (SO INTEGER ARITHMETIC MAY BE
DONE ON 1ST HALF OF R) IF LOOK = -2 .
*SUBROUTINE CHID(CHARA,CHARB,ID)

*INPUT PARAMETERS

LA AL SR AR L K R BE BE BE 3R BE B SR K IR IR NET S S SV

* CHARA,CHARB SINGLE CHARACTERS (LOGICAL*1 OR HOLLERITH)

*QUTPUT PARAMETER

* ID INTEGER OR LOGICAL*Y SET TO 1 (.TRUE,) IF CHARA

* AND CHARB ARE EQUAL, ELSE TO 0 (.FALSE.)

*SUBROUTINE CHLOC(CHAR,STRING,N,LOC)

*INPUT PARAMETERS

* CHAR SINGLE CHARACTER (LOGICAL$1 OR HOLLERITH)

* STRING CHARACTER STRING (LOGICAL*1 ARRAY OR HOLLERITH)

105

* N INTEGER LENGTH OF STRING IN BYTES

*OUTPUT PARAMETER

* LoC SET TO LOCATION OF FIRST OCCURRENCE OF CHAR 1IN

* STRING , OR TO N+1 IF CHAR DOES NOT OCCUR IN STRING.
MACRO

sL T €A ,8B,8C,5D,6E,6F

&L DC AL2 (5A-B)

DC AL2 (§B-B)
DC AL2 (6C-B)
DC AL2 (6D-B)
DC AL2 (SE-B)
DC AL2 (§F-B)

MEND

LOOK START

*REGISTERS

AR EQU 1 BEASE OF ARRAY (MODIFIED)

CR EQU 2 POINTS AT CURRENT CHARACTER

IR EQU 3 FIRST NON-ELANK CHAR

LR EQU 7 LIMIT ON SCAN

W EQU 8 WORKING (ALWAYS CLEAR EXCEPT LAST BYTE)
ER EQU 9 HOLDS EXPONENT

TR EQU 10 TABLE BASE REGISTER

AR EQU 1 TRANSFER REGISTER

*FLAGS

PB EQU X0 DEC PT POUND

SB EQU X102 NEG SIGN

EDB EQU Xxt04! DIGIT FOUND IN EXPONENT
ESB EQU X1 08! SIGN n "
ENB EQU Xt10! NEG EXP

CHAR DSECT

C DS CL1

ARGHY DSECT

ILOC DS F

ARGS DSECT

NLOC DS P

ARG6 DSECT

R DS D

USING CHAR,2

USING ARGU,U4

USING ARGS,5

USING ARG6,6
LOOK CSECT

STM 1,12,20(13) (SAVE AREA NOT NEEDED FOR THIS PROGRAM)
BALR 12,0 SET BASE REG
USING *,12
B LM 1,6,0(1) LOAD ARGUMENT ADDRESSES
BCTR AR, O POINT AR AT A(0)

L 2,0(2) PICK UP N

LA
L
LA
SR
BCTR
ENDCH LA
CR
BNH
SR
B
NEND CLI
BE
LA
NVI
LR
SR
ST
LR
B
NEXT LA
GETC IC
IC
CR
BNH
IC
NTE LH
B

LR,0 (AR,2)
3,0(3)
CR,0(AR,3)
W, N

CR,0
CR,C#1
CR,LR

NEND

0,0

EXIT

c,c* !
ENDCH
TR,INIT
F,0 ‘
IR,CR
IR,AR
IR,ILOC
IR,CR
GRTC
CR,C+1

w,C

W,TAB (W)
CR, LR

NTE
W,=2L1(10)
XR,0 (TR, W)
B (XR)

INIT T ID,IW,IW,IP,IS,SPEC

ID SDR
LD
LD
LA
DG MVN
TN
BO
MDR
AD
B
FRAC DDR
LDR
MD
ADR
B
N LA
. B
Ip T

*** NOTE ASSUMPTION THAT CERTAIN NON-DIGIT (NON- EBCDIC) BYTES DO

%

0,0

2,=D"10.!

4,=p*'1.?

TR,DIG
NUM+1(1),C

F,PB

FRAC

0,2

0,NOM

NEXT

4,2

6,4

6,NUM

0,6

NEXT

TR,WORD

NEXT

C+1,X'FO!

NOT OCCUR.

106

SET ADDR OF
PICK UP LCC
SET INITIAL VALUE POR CR
CLEAR W

SET BACK

ADVANCE POINTER

OVER THE END?

SKIP IF NOT

ELSE RETURN O

A(N) IN LR

BLANK?

IF SO, CONTINUE SCAN
ELSE SET FOR INITAL TEST
CLEAR FLAGS

NOTE CURRENT POSITION
GET RELATIVE VALUE

SET VALUE IN CALLER

AND SAVE AGAIN FOR USE HERE
BEGIN

ADVANCE POINTER

PICK UP CHARACTER
TRANSLATE

TEST FOR END

SKIP IF NOT

ELSE TAKE CODE POR SPECIAL CHARACTER

PICK UP TRANSFER VALUE

AND BRANCH ON IT

INITTIAL CHARACTER

INITIAL DIGIT. CLEAR FRO
10 TO PFR2

1 TO FRAU

SET DIGIT MODE

INSERT DIGIT IN DUMMY NUMBER
BEFORE DEC?

SKIP IF NOT

MULT BY 10

ADD NEW DIGIT

DIVIDE POWER BY 10

coPY

MUOLT BY DIGIT

ACD TO VALUE

INITIAL LETTER, SO SET WORD MODE

DIGIT FOLLOWS?

IS

POS

. |

EXIT

DIG T
DE

DP

DT

DFT

RPOS

EXp T
ED

BNO SPEC
CR CR, LR

BE SPEC

o1 F,PB

B NEXT

CLI c,Ct-1
BNE POS

oI F, SB

CLI C+1,C0 .1
BE NEXT

™ C+1,X'FO?
BO NEXT

LR CR, IR

LA 0,2(0)
LNR 0,0

XC R,R

MV C R+3(1),C
LA CR,C+1

SR CR,AR

ST CR,NLOC
LM 1,12,20(13)
SR 15,15

BR 14
DG,DE,DT,DP,DT, DT
™ F,PB

BZ DT

SR ER, ER

LR IR,CR

LA TR,EXP

B NEXT

™ F, PB

BO DT

oI P,PB

B NEXT

LA 0,1(0)

T™ F,PB

BZ DFT

AR 0,0

TN F,SB

BZ RPOS

LNDR 0,0

STD 0,R

B ™
ED,ET,ET,ET,ES,ET
IC W,C

N #,=F115!?
MH ER,=H' 10"

107

IF NOT, TREAT POINT AS SPECIAL CHAR

AT END OF STRING?

IF SO, TREAT AS SPECIAL CHARACTER
ELSE SET FLAG

CONTINUE, STILL IN INIT MODE
INITIAL SIGN. MINUS?

SKIP IF NOT

ELSE SET BIT FOR NEGATIVE SIGN
PERIOD FOLLOWS? (SEE NOTE UNDER
IF SO STAY IN INIT MODE

DIGIT NEXT? (SEE NOTE UNDER IP)
IF SO STAY IN INITIAL MODE

NOT WORD OR NUMBER. SET POINTER
(MAY HAVE EEEN ALTERED BY IP OR
SET RETURN VALUE

OF MINUS 2

CLEAR &K
PUT CHARACTER IN 4TH BYTE
POINT AT NEXT CHARACTER

GET RELATIVE LOCATION
STORE IN CALLER

RESTORE

0 RETURN CODE

AND LEAVE

WE'RE WORKING ON A NUMBER
D OR E FOUND.
QUIT IF NOT, ELSE
CLEAR EXPONENT REGISTER

NCTE LOCATION FOR POSSIBLE RESET
SET EXPONENT MODE

DEC PT. GOT ONE ALREADY?
QUIT IF SO

ELSE SET FLAG

CONTINUE IN DIGIT MODE
SET RETURN CODE OF 1

DEC PT?

SKIP IF SO

ELSE MAKE CODE 2
NEGATIVE?

SKIP IF NOT

ELSE CHANGE SIGN

STORE RESULT

(CR
WORKING ON AN EXPONENT
PICK UP DIGIT

REMOVE ZONE

MULST PREV VALUE BY 10

PREVIOUS DEC PT?

IP)

BACK

I5)

PRESUMABLY POINTS BEYOND END OF #)

AR ER,W
o1 F,EDB
B NEXT
ES TN P, EDB+ESB
BC - 5,ET
o1 F,BSB
CLI c,ct-!
BNE NEXT
oI F,ENB
B NEXT
ET ™ F,EDB
BO ETT
LR CR, IR
B DT
ETT LA 0,2(0)
c ER,=F'72!
BH ERRA
LTR ER,ER
BNM EOK
ERRA TM ?,ENB
BO ENG
ERR LA 0,3(0)
ENG SDR 0,0
B RPOS
ETES TM =AL1(1),0
EOK LD 4,=D11,?
ELP EX ER,ETES
BZ NOBIT
MDR 4,2
NOBIT MDR 2,2
SRA ER,1(0)
BNZ ELP
™ P,ENB
B2 POSEX
DDR 0,4
B DT
POSEX MDR 0,u
B DT
WORD T NEXT,NEXT,NEXT,WT,¥T,WT
WT MVC R,BLKS
LR ER,CR
SR ER, IR
BCTR ER,O
c ER,=F1 7"
BNH WEX
L ER,=P' 7"
WEX EX ER,WMVC
LA 0,1(0)

108

ADD IN DIGIT
PLAG FOR EXPONENT DIGIT FOUND

EXP SIGN., SIGN OR DIGIT ALREADY?
TERMINATE IF SO

ELSE NOTE SIGN FOUND

IS IT - 7?2

SKIP IF NOT

ELSE SET FPLAG

END OF EXP. WERE THERE ANY DIGITS?
SKIP IP SO

ELSE POINT BACK TO THE E OR D
AND TERMINATE

PREPARE TO RETOURN 2

TEST EXPONENT SIZE

ERROR IF TOO BIG

CHECK SIGN (COULD COME PROM OVER FLOW)
OK IF NOT NEG

NEG EXP?

IP SO GIVE ZFRO WITHOUT ERROR FLAG
ELSE SET RETURN CODE OF 3

GIVE ZERO RESLUT

AND GO

EXECUTED TO TEST LAST BIT OF REG
SET 1 1IN FR4

LAST BIT OF ER ON?

SKIP IF NOT

ELSE MULTIPLY

SUQARE POWER OF 10

SHIPT RIGHT

AND DO IT AGIAN IF NECESSARY

NEG EXP?

SKIP IF NOT

ELSE DIVIDE

AND GO

MULTIPLY

AKD GoO.

WORD COLLECTING MODE

BLANK OUT R

USING ER, GET

LENGTH OF STRING

DECREMENT TO MAKE LENGTH CODE
COMPARE WITH LENGTH 8

AND SKIP IF NOT OVER 8

ELSE SET TO 8

AND MOVE WITH THE COMPUTED LENGTH
SET RETURN VALUE

Y 4

WMVC

CHID

IDCX

CHLOC

LCHL

LCHX

LNR
B
Mvce
ENTRY
USING
STHM
LM
XC
CLC
BNE
MVI
LM
SR
BR
ENTRY
USING
STH
LM
LR

A
BCTR
LA
LNR
CLC
BE
BXLE
LA
ST
LM
SR
BR
DC
ORG
DC
DC
ORG
DC
ORG
DC
ORG
DC
DC
DC
ORG
DC
ORG
DC
ORG

0,0

™

R (0) ,0 (IR)
CHID

*,15
1,3,20(13)
1,3,0(1)
0(,3),0(3)
0(1,1),0(2)
IDCX

3(3),1
1,3,20 (13)
15,15

14

CHLOC

*,15
2,7,26(13)
5,0(1)

o~
&
A

2) ,0(3)

o™ &« % q & «

DNEM d)= DO W
Lan Y
o
“—

14
X
¢6,LCHL

e 1(4,3)
+0(5)
2,7,24(13)
15,15

14
256X1'0A!
TAB+75
X'06"!
X108!? AT
TAB+78
X081
TAB+96
xro8?
TAB+129
3x*04¢
2X102°
4xeou
TAB+145
gx'out?
TAB+162
8X*0ou
TAB+193

FEWHOEOYIININ

TC

MINUS 1

109

EXECUTED MOVE STATEMENT

SAvV

E

LOAD ARGUMENT ADDRESSES

SET
con

RESULT TO
PARE 1

0

SKIP IF NOT EQUAL

ELSE SET RESULT TO 1

RESTORE

0
RET

RETURN CODE
URN

SAVE
LOAD ARGUMENT ADDRESSES

COM
ADD
-1

SET

BRANCH IF EQUAL

POTE

R ¢+ N
IN R7
1 IN RS6

CHARACTER

AS SEARCH LIMIT

FOR INCREMENT
SAVE MINUS ORIGINAL ADDRESS
CCMPARE SINGLE CHARACTERS

ELSE ADVANCE EOINTER ANL LOOP
= (FINAL ADR) -
STORE RESULT
RESTORE

RES

0
RET

FILL TABLE WITH 10°'S

PER

TAB+80

RETOURN CODE
URN

IOD

FOR BCD

PLUS

MIN
ABC
DE

F-I
J-R

S-2

us

!

(INIT ADR)

+ 1

NUNM

BLKS

DC
bC
DC
ORG
DC
ORG
DC
ORG
DC
ORG
DS
DC
DC
DS
END

3x104; ABC
2X'02! DE

4xvoy!? F-I
TAB+209

9xX*04? J-R
TAB+226

8X'04¢ S-Z
TAB+240

10X'00? N-9

0D DUMMY NUMBER WITH EXP OF 2
X'4200000000000000?
cLgr ¢ BLANKS
CL1 FLAG BYTE

110

INDEX

ABGS

AT (3)
ATDEN
ATINT
ATNUM
ATTACK
AUTHOR

BARLIN
BR
BRACK-

CAL
CLEP
COMPOSER

DEC
DIABS
DINDIR
DINITVL
DIOCT
DNC
DOTIND
DURAT
DURDEN
DURNUM
DORINT

EDITOR
ENDB
ENDBLK
ENDC
ENDF

PERM
FILE END
FINAL MOVEMENT

FINAL SUB-SECTION

FINDBK
FINDFD

FRACAD (J,K,L,M, N,NN)

FRACOM
FRALCD (J,K,L)

FRAMPY (J,K,L,M, N,NN)
FRASUOB (J,K,L,M,N,NN)

49
39

24, 39
24, 39
24, 39
6

4, 31
24, 38, 46
16

24, 38
46, 51, S5
5, 24

u

56

50

42, 51
42, 52
42, 51
39

24, 38
24, 38
24, 39
24, 39
24, 39
4, 31

30

22
45,55,56
56

16

18

15

15

47

46

47

47

47

47

47

1M1

FUNCTION
FUNCTION ABGS
FONCTION FRACONM

GENUS
GET
GRPNO

HEDB
HEDBLK

ICLEPH
INIT
INSTRU
INTDIR
INTEGER
INTNOT
INTREG
INTVL
ISCAL
ISNGEN
ISPREP
ITSVDN
ITSVNN

KEY

KEYPC
KEY2?UNCHER
KEYWORDS

L -
LINE
LISHER
LYNB
LYNBLK
LYNE
LYNENO

MAIN

MREXLYN
MEASNO
MESDEN
MESINT
MESNUM

N
NBARCT
NBRACK

46
43
47

42, 51, sS4
55
24, 38

30
22

24
48

24, 33

41

29

41

41

41, 52, 53
55

55

55

32

32

7
32
4
4

11
us
31
30
22
4

35

43
24
35
39
39
39

10
24
24

112

113

NCODEN 24
NCOINT 24
NCONUM 24
NDOTND 24
NDURAT 24
NFIL 30
NGEN 55
NGENU 55
NGRPNO 24
NOTB 30
NOTBLK 22
NOTDEN 24
NOTE 46
NOTECL 32, 35
NOTENO 35
NOTINT 24
NOTNUM 24
NPHMRK 24
NREC 30
NSEC 30
NSYSNT 24
NPRECA 24
NREGCL 24

NS 10
NSEMIT 24
NSPECN 24
NSTAFP 24
NSUGGA 24
NSYSDN 24
NSYSNM 24

NT 10
NTIEND 24
NUMLYN 24, 38
NUMPIC 55
PLACE 4
POSER 31
PRECAC 24, 36
PREP 46, 51, 55
PUBLISHER u
PUNXER 31
RANGER 31
READBK 57
READFD u4, 55, 56
REAL 29
REDUCE 7

REGCL 24, 35

REGSTR
REPKEY
RETIME

S
SEARCB
SEARCF
SEMITO
SIGKEY
SKIP
SPACER (N)
SPECSN
SRCREC (N)
Ss

STAFPO
SUBTIT
SUBTITLE
SUGGAC
SYSDEN
SYSINT
SYSNUM

TALB
TALBLK
TEXT
TIEIND
TIME
TITLE
TOCOMP
TOCURN
TOLYNE
TOMEAS
TONEXT
TONOTE
TOREC
TOSECN
TOSECT
TOTITL
TPBACK
TPGET
TPOPEN
TPREAD
TPSTAR
TSDEN
TSNOM
T

TT
TUCK

24,
33

10
4s,
55
24,
33
48
48
24,
56
10
24,
31

24,
24,
24,
24,

30
22
39
24,
6

4,
30,
30,

45
45
45
46
30,

4y
57
57
58,
58,
58
33
33
10
10

114

35

55, 56

35

39

37

36
39
39
39

40

31

44
46

45

30
90

115

TYPE 30

14 11
UNPACK 46, 51
UNTUCK S
XNSTRU 24

+ 13

* 13

	IML-MIR-001
	IML-MIR-002
	IML-MIR-003
	IML-MIR-004
	IML-MIR-005
	IML-MIR-006
	IML-MIR-007
	IML-MIR-008
	IML-MIR-009
	IML-MIR-010
	IML-MIR-011
	IML-MIR-012
	IML-MIR-013
	IML-MIR-014
	IML-MIR-015
	IML-MIR-016
	IML-MIR-017
	IML-MIR-018
	IML-MIR-019
	IML-MIR-020
	IML-MIR-021
	IML-MIR-022
	IML-MIR-023
	IML-MIR-024
	IML-MIR-025
	IML-MIR-026
	IML-MIR-027
	IML-MIR-028
	IML-MIR-029
	IML-MIR-030
	IML-MIR-031
	IML-MIR-032
	IML-MIR-033
	IML-MIR-034
	IML-MIR-035
	IML-MIR-036
	IML-MIR-037
	IML-MIR-038
	IML-MIR-039
	IML-MIR-040
	IML-MIR-041
	IML-MIR-042
	IML-MIR-043
	IML-MIR-044
	IML-MIR-045
	IML-MIR-046
	IML-MIR-047
	IML-MIR-048
	IML-MIR-049
	IML-MIR-050
	IML-MIR-051
	IML-MIR-052
	IML-MIR-053
	IML-MIR-054
	IML-MIR-055
	IML-MIR-056
	IML-MIR-057
	IML-MIR-058
	IML-MIR-059
	IML-MIR-060
	IML-MIR-061
	IML-MIR-062
	IML-MIR-063
	IML-MIR-064
	IML-MIR-065
	IML-MIR-066
	IML-MIR-067
	IML-MIR-068
	IML-MIR-069
	IML-MIR-070
	IML-MIR-071
	IML-MIR-072
	IML-MIR-073
	IML-MIR-074
	IML-MIR-075
	IML-MIR-076
	IML-MIR-077
	IML-MIR-078
	IML-MIR-079
	IML-MIR-080
	IML-MIR-081
	IML-MIR-082
	IML-MIR-083
	IML-MIR-084
	IML-MIR-085
	IML-MIR-086
	IML-MIR-087
	IML-MIR-088
	IML-MIR-089
	IML-MIR-090
	IML-MIR-091
	IML-MIR-092
	IML-MIR-093
	IML-MIR-094
	IML-MIR-095
	IML-MIR-096
	IML-MIR-097
	IML-MIR-098
	IML-MIR-099
	IML-MIR-100
	IML-MIR-101
	IML-MIR-102
	IML-MIR-103
	IML-MIR-104
	IML-MIR-105
	IML-MIR-106
	IML-MIR-107
	IML-MIR-108
	IML-MIR-109
	IML-MIR-110
	IML-MIR-111
	IML-MIR-112
	IML-MIR-113
	IML-MIR-114
	IML-MIR-115
	IML-MIR-116
	IML-MIR-117
	IML-MIR-118
	IML-MIR-119
	IML-MIR-120
	IML-MIR-121
	IML-MIR-122
	IML-MIR-123
	IML-MIR-124
	IML-MIR-125
	IML-MIR-126

