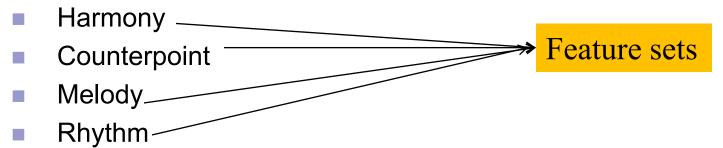

Analytical uses of Humdrum Tools

Music 253/CS 275A Stanford University

Traditional categories of music analysis

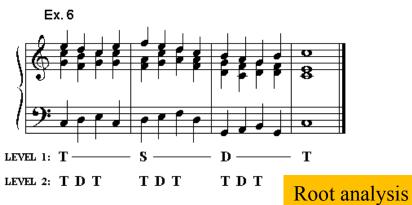

Traditional means of analysis

Rhythm-

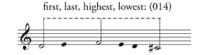
Traditional categories of music analysis

Traditional means of analysis

Humdrum = Toolset
**kern = encoding format


>>Manual processes in music analysis

Riemann analysis



Schenkarian analysis

Agmon, Conventional Harmonic Wisdom

Blair Johnson, MTO (2012)

Perspectives on music analysis: 1-2

- Traditional (theoretical, historical) means of analysis
 - Harmony
 Counterpoint
 Melody

 Feature sets:
 Results related to score
 - Rhythm
- Statistical (systematic) approaches

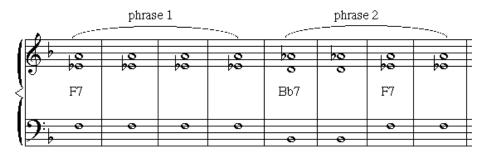
Feature sets: results reported in tables, charts, graphs

Disembodied information about music

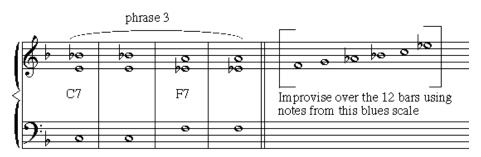
Audio-based analysis

More approaches to analysis

- Procedures imported from other disciplines
 - Often procedural or structural
 - Borrowed from
 - Linguistics
 - Mathematics
 - Computer science
 - Engineering
- Cognitive and perceptual studies
- Performance-based analysis
- Data visualization


Other legitimate projects

- Data translation, enrichment
- Linking symbolic data with MIDI, audio, structured data
- Style evaluation
 - generation as proof of general concept
 - Attribution studies (e.g. Josquin Research Project)
- Deep-learning/convolutional-network (AI) analysis


Sample Projects, Random Order

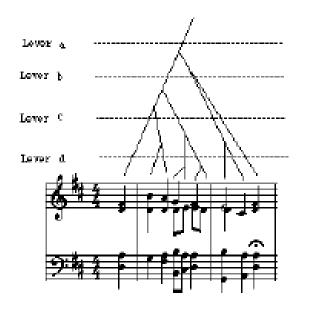
Algorithmic generation: 12-bar blues

Exercise: Simple 12-bar Blues in F

Francesco Giomi, c. 1988

Is repertory highly patterned?

Phrase families (centonization)


- □ Panos Mavromatis (2006)
 - N.B. Lerdahl-Jackendoff touch

Linguistic orientation

Figure 3. A Phrase family in Echos 1, illustrating formulaic variation. Brackets above the staff mark the family's opening and closing formulas.

Hierarchical systems: Lerdahl-Jackendoff

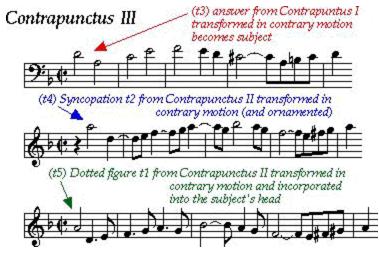
Generative theories of musical grammar (1984)

Linear systems (species counterpoint)


Two-Voice Analysis

Several systems

Pedagogical orientation


Imitative systems (18th-century counterpoint)

Timothy Smith, NAU

Music-theory applications

Generative chorale variations

- □ Dominik Hörnel (2005): Pachelbel
 - Keyboard elaboration generated from chorale melody

Chorale elaboration

Rhythm, Meter, Tempo (performance)

Simon Dixon, Gerhard Widmer, Walter Göbl (2004)

Comparative performance analysis

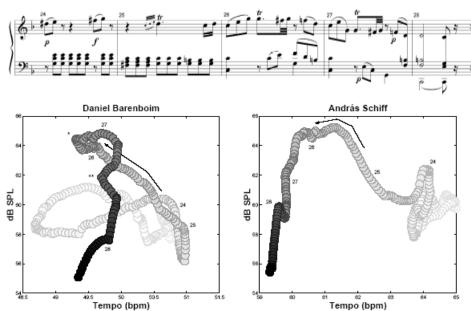


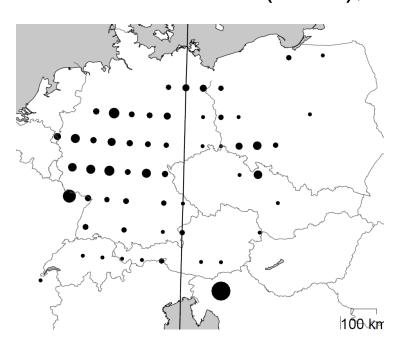
Figure 4. Expression trajectories over the last bars (mm.24–28) of the Mozart piano sonata K.279, second movement, first section, as played by Daniel Barenboim (left) and András Schiff (right). x axis: tempo in beats per minute; y axis: dynamics ('loudness') in decibel. The darkest point represents the current instant (third beat of m.28), while instants further in the past appear fainter.

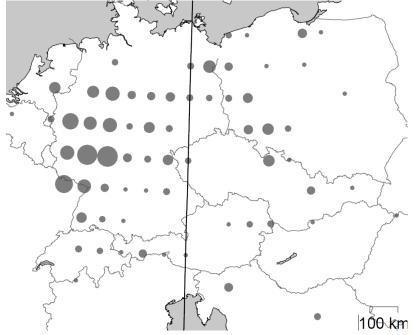
Computation perception

Gerhard Widmer, *Motherboard* (2016)

MACHINES | By Michael Byrne | Oct 9 2016, 11:00am

Computer Scientist Publishes Manifesto for Expressive


Algorithmic Music


A new five-year research project aims to I how humans compute music.

Geospatial mapping of musical features

□ Bret Aarden (1998), from EsAC data

Minor mode Triple meter

Tabla drumming

Parag Chordia: bol processor (2006)

Non-Western repertories

Dhene ghene dheneghene nage tak dhane dha na ge tak dha ne dha dha ketetake kitetak

- + dhenegene dheneghene taketake dha ne
- + kr dhin O na kitetake dheneghene
- + gerenage na kite ta dhe te kitetak gerenage na kite ta
- + dha

- dha nagetake dha ne dha dhet ta kitetake ta
- natete dhet kitetak gerenage ta gadigene dha kitetak
- dha ta gadigene dha

- 8.0 2.0 0.0 -36 0.0 0.0 -1.0 t 2 6 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 _04dha t 2 21.582 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0
- t 2 28.26 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0
- __04ce t 2 36.058 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0

- t 2 60.502 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 O4dhe
- t 2 101.5 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 0.0 04te
- t 2 108.178 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 O4te
- t 2 114.856 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
- t 2 124.474 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 O4dhe
- t 2 136.696 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 O4te
- t 2 143.374 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 0.0 04dha
- t 2 154.476 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 _O4te
- t 2 158.914 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 O4re
- T 2 163.632 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0
- T 2 167.468 0.0 1.0 1.03245 0.0 0.0 0.0 0.0 0.0 0.0 04te

Haydn-Mozart Quartet Quiz

(machine learning/information theory)

The Haydn/Mozart String Quartet Quiz

Can you tell the difference between the musical styles of Haydn and Mozart?

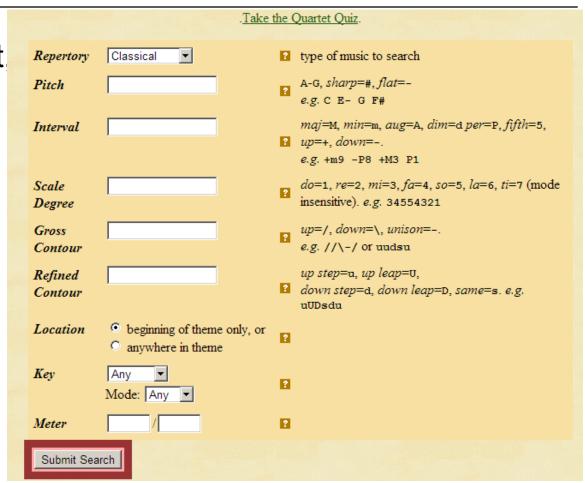
This website tests how well you can distinguish between the string quartets of these two composers. You will listen to randomly selected movements composed by either Mozart or Haydn. Then, you will choose the composer you think wrote the music you have just heard.

Digital scores for the quartet quiz have been provided by the <u>Center for Computer Assisted Research in the Humanities</u> at Stanford University. Click the start button below to answer some questions about your musical knowledge and then start the quiz...

View current identification statistics

Brought to you by Craig Sapp and Yi-Wen Liu, Stanford University.

or ...


Yi-Wen Liu, C. Sapp (2002-04) -entropy study (EE) [qq.themefinder.org]

Themefinder (melodic search)

☐ Huron, KornstädtSapp, et al. (1996)

themefinder.org

Similarity studies

Computer methodologies in music search

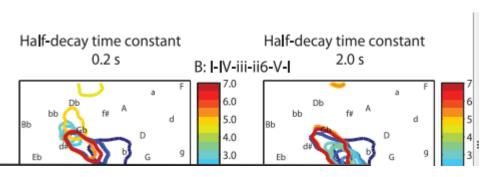
- Music geohash
- Counterpoint/surfacing crawling
- Musical structure discovery via deep-learning algorithms (2016)
- Currently runs ETLeap (data extraction, transformation, loading)

Melodic search in big data

- □ Sapp, Liu, Selfridge-Field (ISMIR, 2004)
- Search Effectiveness

http://ismir2004.ismir.net/proceedings/p051-page-266-paper135.pdf

- Uses 100,000 musical incipits
- Also: Sapp, Shanahan: Rhythmic search in 1m+ incipits


Studies comparing analytical tools

- Claire ArthurMEI Proceedings (2015)
- Compares,Humdrum, MEI

- Johanna Devaney,
 Hugh Gauvin (Springer Verlag, 2016)
- Advocates
 extensions to
 Humdrum and MEI

Neuromusicology

- Carol Krumhansl: Tonal, harmonic understanding
 - Their physiological correlated
- Petr Janata: specific-key perception
 - Neural correlates
- Petri Toiviainen
 - Spatial-temporal music cognition

