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ABSTRACT
The ideal content-based musical search engine for large cor-
pora must be both expressive enough to meet the needs of
a diverse user base and efficient enough to perform queries
in a reasonable amount of time. In this paper, we present
such a system, based on an existing advanced natural lan-
guage search engine. In our design, musically meaningful
searching is simply a special case of more general search
techniques. This approach has allowed us to create an ex-
tremely powerful and fast search engine with minimal effort.

1. INTRODUCTION
This paper describes a system for music searching that is ex-
pressive enough to perform both simple and sophisticated
searches that meet a broad range of user needs. It is also
efficient enough to search through a large corpus in a reason-
able amount of time. The music search system was created
by extending an existing advanced natural language search
engine with simple filters and user-interface elements.
This paper will describe the search engine in the context of
our larger sheet music digitization project, and relate it to
other musical search engines already available for use on the
web. Then, the capabilities of the non-music-specific core of
the search engine will be described, followed by the exten-
sions necessary to adapt it to music.

2. BACKGROUND
The Lester S. Levy Collection of Sheet Music represents one
of the largest collections of sheet music available online.
The Collection, part of the Special Collections of the Mil-
ton S. Eisenhower Library at The Johns Hopkins University,
comprises nearly 30,000 pieces of music (Choudhury et al.
2000). It provides a rich, multi-facetted view of life in late
19th and early 20th century America. Scholars from vari-
ous disciplines have used the Collection for both research
and teaching. All works in the public domain are currently
available online as JPEG images. The user can browse the
collection by category or search based on metadata, such as
author, title, publisher, and date. Musical searches, such as
finding a particular melodic or rhythmic pattern, will soon be

possible once the collection has been converted to symbolic
musical data.
To convert this data, an optical music recognition (OMR)
system is being developed (Choudhury et al. 2001). We
chose GUIDO as the target representation language due
to its simplicity and extensibility (Hoos and Hamel 1997).
Having music in a symbolic format opens the collection to
sound generation, musicological analysis and, the topic of
the present paper, musical searching.

3. PRIOR ART
None of the available musical search engines we evaluated
met the needs of the diverse user base of the collection, or
could handle the large quantity of data in the complete Levy
collection. In particular, we evaluated two projects in detail:
Themefinder (Huron et al. 2001) and MELDEX (McNab et
al. 1997).

3.1 Themefinder
Themefinder’s goal is to retrieve works by their important
themes. These themes are manually determined ahead of
time and placed in an incipit database.
One can query the database using five different kinds of
search queries: pitch, interval, scale degree, gross contour,
and refined contour. These five categories served as the in-
spiration for a subset of our basic query types. The user can
query within an arbitrary subset of these categories and then
intersect the results. However, Themefinder does not allow
the user to combine these query types within a single query
in arbitrary ways. For instance, a user may know the begin-
ning of a melodic phrase, while the ending is more uncertain.
Therefore, the user may want to specify exact intervals at the
beginning and use gross contours or wild-cards at the end.
Unfortunately, in Themefinder, the user must have the same
level of certainty about all of the notes in the query. Un-
fortunately, this is not consistent with how one remembers
melodies (McNab et al. 2000).
In addition, Themefinder does not have a notion of rhythmic
searching. While its invariance to rhythm can be an asset, it
can also be cumbersome when it provides too many irrele-
vant matches. Figure 1 shows the results of a query where

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.



one result is more relevant than the other. Such queries may
return fewer false matches if they could include rhythmic in-
formation.
The searches themselves are executed in Themefinder us-
ing a brute-force method. The entire database is linearly
searched for the given search query string. While this is
acceptable for the 18,000 incipits in Themefinder’s largest
database, it may not scale well for searching across a full-
text database such as the Levy collection.

Beethoven, Ludwig Van. Quartet in E Minor, Op. 59, No. 2
“Rasoumowsky”, 4th Movement.

Beethoven, Ludwig Van. Sonata No. 4, in A Minor, Op. 23, Violin
and Pianoforte, 1st Movement.

Figure 1: These two incipits start with the identical set
of pitches, [c d e d], but with different rhythmic content.
With better rhythmic specificity, irrelevant results could
be eliminated. (http://www.themefinder.org/)

3.2 MELDEX
The simple text-based query strings in Themefinder are easy
to learn and use by those with moderate musical training.
MELDEX, however, has a more natural interface for non-
musicians. The user sings a melody using a syllable with a
strong attack such as “tah.” The pitches of the melody are de-
termined using pitch-tracking, and the rhythm is quantized.
The results are used as the search query. The query is approx-
imately matched to melodies in the database using a fast-
matching algorithm related to dynamic programming. While
this approach is highly effective for non-musicians and sim-
ple queries, it is limiting to those wanting more fine-grained
control.

4. CAPABILITIES
Our musical search engine supports both melodic and rhyth-
mic searches. Search queries can also include the notion of
simultanaeity. That is, events can be constrained to occur
at the same time as other events. The search engine, as de-
scribed here, is limited to standard-practice Western music,
though modifications could be made to support other musical
traditions.

4.1 Extensibility
Other types of musical searching beyond these core capa-
bilities require additional layers of musical knowledge to be
built on top of the search engine. The general design of the
search engine encourages such extensibility. Any analytical
data that can be derived from the score data can be gener-
ated offline (ahead of time) and later used as search criteria.

This data can be generated by new custom tools or existing
analysis tools such as the Humdrum toolkit (Huron 1999).
For example, the search engine could be extended to support
harmonic searches with respect to harmonic function. West-
ern tonal harmonic theory is ambiguous, making it difficult
to objectively interpret and label harmonies. This is a largely
unsolved problem that is not the subject of our present re-
search. However, assuming an acceptable solution to these
issues could be found, labeling of harmonic function could
be implemented as an input filter.
Also, the core search engine does not include any notion
of melodic similarity. This is an open problem strongly
tied to subjective matters of human perception (Hewlett and
Selfridge-Field 1998). It is possible for a specialized front-
end to include notions of melodic similarity by generating
specialized search queries. The search query language of the
core search engine is expressive enough that these advanced
features could be added without modifying the core itself.

4.2 Meeting diverse user requirements
We define the users of our musical search engine as any-
one who wants to access the collection in a musical way. Of
course, the needs of different users are greatly varied. A non-
musician may want to hum into a microphone to retrieve a
particular melody. A copyright lawyer may want to track the
origins of a particular melody, even melodies that are merely
similar. A musicologist may want to determine the frequency
of particular melodic or rhythmic events. To meet these di-
verse needs, it is necessary to provide different interfaces for
different users. The set of interfaces is arbitrary and can be
extended as new types of users are identified. It may include
graphical applications, web-based forms and applets, or text-
based query languages. Audio interfaces, with pitch- and
rhythm-tracking may also be included. The purpose of these
interfaces is to translate a set of user-friendly commands or
interactions into a query string accepted by the search en-
gine. The details of that query can be hidden from the end-
user and therefore can be arbitrarily complex.
At present, we have focused our attention on the core search
engine itself. In the second phase of the search engine
project, the user interfaces will be developed in collabora-
tion with a usability specialist.

5. THE CORE SEARCH ENGINE
The core search engine in our system was originally devel-
oped for text-based retrieval of scores based on their meta-
data and full-text lyrics. Its overall design was inspired by
recent developments in the field of natural-language search-
ing (DiLauro et al. 2001). These features allow the user to
perform search queries using the embedded context in natu-
ral languages, such as parts of speech, rhyming scheme, and
scansion. While not originally intended for musical search-
ing, it was soon discovered that the core was very well suited
for searching across symbolic musical data.



The core itself did not need to be modified to support music
searching. Instead, specialized filters and front-ends were
added to adapt it to the music domain. In the ingestion
stage, the data is filtered to store it in the appropriate in-
dices and partitions (see Section 6). When searching, special
user interfaces handle the details of generating search query
strings and filtering and displaying the resulting data. Figure
2 shows how the individual parts of the system fit together to
ingest and query the data.
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Figure 2: Workflow diagram of the musical search engine.

5.1 Inverted lists
Many search engines, including ours, are built on the concept
of an inverted list. For a complete discussion of inverted list
search engines, see Witten et al. (1999).
Sequential data, such as English prose or melodic data, is
stored on disk as a sequence of atoms. In the case of En-
glish, the atom is the word and the sequence is simply the
ordered words as they appear in sentences and paragraphs.
Take for example the following sentence:

To be , or not to be , that is
the question .

Note that both words and punctuation are treated as indivis-
ible atoms. To search for a particular atom in this string, a
computer program would need to examine all thirteen atoms
and compare it with a query atom. To increase searching ef-
ficiency, an inverted list search engine would store this string
internally as:

, −→ {3, 8}
. −→ {13}
be −→ {2, 7}
is −→ {10}
not −→ {5}
or −→ {4}
question −→ {12}
that −→ {9}
the −→ {11}
to −→ {1, 6}

Here, each atom in the string is stored with a list of num-
bers indicating the atom’s ordinal location within the string.
The set of words in the index is called the vocabulary of the
index. To search for a particular atom using the index, the
program needs only to find that word in the vocabulary and
it can easily obtain a list of indices (or pointers) to where that
atom is located within the string. Since the vocabulary can
be sorted, the lookup can be made faster using hashing or a
binary search.
Inverted lists perform extremely well when the size of the
vocabulary is small relative to the size of the corpus. In the
case of English, of course, the vocabulary is much smaller
relative to the size of all the works written in that language.
This property also allows us to improve the efficiency of mu-
sical searching as we will see below.

6. THE MUSICAL SEARCH ENGINE
The musical search capabilities are supported by three main
features of the core search engine:

1. Secondary indices allow the amount of specificity to
vary with each token.

2. Partitions allow search queries to be performed upon
specific discontiguous parts of the corpus.

3. Regular expressions allow advanced pattern match-
ing.

Figure 3: A measure of music, from the Levy collection,
used as an example throughout this section. (Guion, D.
W., arr. 1930. “Home on the range.” New York: G.
Schirmer.)

6.1 Secondary indices
In the case of music, the searchable atom is not the word, but
the musical event. Events include anything that occurs in the



score, such as notes, rests, clefs, and barlines. Each of these
events, of course, can have many properties associated with
it. For instance, the note b� at the beginning of the fragment
in Figure 3 has the following properties:

• Pitch name: b
• Accidental: �
• Octave: -1 (first octave below middle-c)
• Twelve-tone pitch: 10 (10th semitone above c)
• Base-40 pitch: -3 (see Hewlett 1992)
• Duration: eighth note
• Interval to next note: perfect 4th

• Contour (direction) to next note: up
• Scale degree: so (5th scale degree in E� major)
• Lyric syllable: “sel–”
• Metric position: Beat 1 in a 6

8 measure

All of these properties are self-evident, with the exception
of base-40 pitch, which is a numeric pitch representation
where the intervals are invariant under transposition while
maintaining enharmonic spelling (Hewlett 1992). Note also,
we use GUIDO-style octave numbers, where the octave con-
taining middle-c is zero, as opposed to ISO-standard octave
numbers.
The concept of secondary indices allows the individual prop-
erties of each atom to be indexed independently of any other
properties. This allows search queries to have arbitrary levels
of specificity in each event. The set of properties can be ex-
tended to include any kinds of data that can be extracted from
the musical source. For example, if the harmonic function
of chords could be determined unambiguously, a secondary
index containing chord names in Roman numeral notation
could be added. In our design, we use secondary indices to
handle the properties of events that change from note to note.
Continuous properties of events, that are carried from one
event to the next, such as clefs, time signatures, and key sig-
natures, are handled using partitions, explained below (see
Section 6.2).

6.1.1 Ingestion of secondary indices
During the ingestion phase, the source GUIDO data is first
converted to an interim format where all of each event’s
properties are fully specified. For example, the GUIDO rep-
resentation of Figure 3 is as follows:

[ \clef<"treble"> \key<-3> \time<6/8>
\lyric<"sel-"> b&-1*/8.
\lyric<"dom"> e&*0
\lyric<"is"> f
\lyric<"heard"> g/4
\lyric<"A"> e&/16
\lyric<"dis-"> d

]

Each event is then extended so it is fully specified. In this
format, each note event is a tuple of properties:

pitch-name, accidental, octave, twelve-tone-
pitch, base-40-pitch, duration, interval, contour,
scale-degree, lyric-syllable, metric-position

Figure 4 shows the example in fully-specified symbolic rep-
resentation.
Each one of these fields is used to index the database in a
particular secondary corpus. For example, if the notes in the
example were labeled 1 through 6, the data in the secondary
indices may look something like:

• Pitch name
a −→ ∅
b −→ {1}
c −→ ∅
d −→ {6}
e −→ {2, 5}
f −→ {3}
g −→ {4}

• Accidentals
n (�) −→ {3, 4, 6}
& (�) −→ {1, 2, 5}

• Octave
-1 (octave below middle-c) −→ {1}
0 (octave above middle-c) −→ {2, 3, 4, 5, 6}

• Duration
1/4 (quarter note) −→ {4}
1/8 (eighth note) −→ {1, 2, 3}
1/16 (sixteenth note) −→ {5, 6}

6.1.2 Searching using secondary indices
The search query itself is simply a series of events. Each
event can be indicated as specifically or as generally as the
end user (as represented by a user interface) desires. For ex-
ample, the following query would match any melodic frag-
ment that begins on a b� eighth note, has a sequence of 3
ascending notes, ending on a g:

b,&,1/8 / / / g

To execute a search query using secondary indices, the
search engine looks up each “parameter” in their correspond-
ing secondary indices, and retrieves tokens in the secondary
index. These tokens are then looked up in the primary index,
returning a list of positions. These lists are intersected to find
the common elements. This list of locations is then filtered
to include only those events that are sequenced according to
the search query.

6.1.3 Supported user interfaces
This design supports a broad range of user interfaces. A text-
based user interface may allow a user to be very specific in



[ \clef<"treble"> \key<-3> \time<6/8>
b, &, -1, 10, -3, 1/8, P4, /, so, "sel-", 0
e, &, 0, 3, 14, 1/8, M2, /, do, "dom", 1/8
f, n, 0, 5, 20, 1/8, M2, /, re, "is", 1/4
g, n, 0, 7, 25, 1/4, M3, \, mi, "heard", 3/8
e, &, 0, 3, 15, 1/16, m2, \, do, "A", 5/8
d, n, 0, 2, 9, 1/16, M2, \, ti, "dis-", 11/16

]

Figure 4: Fully specified symbolic representation of the example in Figure 3.

the query, and then incrementally remove layers of speci-
ficity until the desired match is retrieved. An audio-based
user interface could be more or less specific depending on
the pitch tracker’s confidence in each event.

6.1.4 Efficiency of secondary indices
One of the efficiency problems with this approach is that the
vocabularies of the individual secondary indices tend to be
quite small, and thus the index lists for each atom are very
large. For instance, the “pitch name” secondary index has
only seven atoms in its vocabulary (a - g). “Accidentals”
is even smaller: {��, �, �, �, ×}. Therefore, a search for a
b� must intersect two very large lists: the list of all b’s and
the list of all flats. However, the search engine can combine
these secondary indices in any desired combination off-line.
For example, given the “pitch name” and “accidental” in-
dices, the search engine can automatically generate a hybrid
index in which the vocabulary is all possible combinations
of pitch names and accidentals. The secondary indices can
be automatically combined in all possible combinations, to
an arbitrary order.

6.2 Partitions
Partitioning can be used to restrict a search query to a partic-
ular part of the corpus. Each partition is a description of how
to divide the corpus into discontiguous, non-overlapping re-
gions. More specifically, each partition is a file containing a
list of regions. Each region within a partition is named and
has a list of its start and stop positions.
In our music search engine, the metadata is used to parti-
tion the corpus into regions. For example, all works by a
given composer would make up a discontiguous region in the
“composer” partition. Partitions exist for all types of meta-
data in the collection, including date, publisher, geographical
location, etc.
In addition, we have extended partitioning to include musical
elements derived directly from the GUIDO data. Regions are
generated from key signatures, clefs, time signatures, mea-
sures, movements, repeats, etc. This allows for searching for
a particular melody in a particular key and clef, for example.

6.2.1 Ingestion of partition data
When a new work is added to the corpus, the data is par-
titioned automatically. First, the metadata regions, such as

title, composer, and date, are set to include the entire piece.
As the piece is scanned, continuous musical elements, such
as clef, key signature, and time signature, are regioned on the
fly. Therefore, when the ingestion filter sees a “treble clef”
token, all further events are added to the “treble clef” region
until another clef token is encountered. Lastly, events are
added to the moment regions on an event-by-event basis.
For the example in Figure 3, again assuming the notes are
numbered 1 through 6, the partitions may look something
like:

• Title partition
“Home on the range” −→ [1, 6]

• Clef partition
Treble clef −→ [1, 6]

• Time signature partition
6
8 −→ [1, 6]

6.2.2 Searching using partitions
Extending the example in Section 6.1.2, the user may wish
to limit the search to the key signature of E�-major:

( b,&,1/8 / / / g ) @ key:"E& major"

Here the non-partitioned search query is performed as de-
scribed above, and then the results are intersected with the
results of the partition lookup. Since in our case, the entire
range of notes [1, 6] is in the key signature of E�-major, the
query will retrieve the example in Figure 3.

6.2.3 Searching with simultanaeity using partitions
Scores are also partitioned at the most atomic level by “mo-
ments.” A moment is defined as a point in time when any
event begins or ends in any part. Moments almost always
contain multiple events, and events can belong to multiple
moments (e.g. when a half note is carried over two quarter
notes in another part). Each moment within a score is given
a unique numeric identifier, and all events active at a given
point are included in a moment region. In this way, one can
search for simultaneous polyphonic events very efficiently.
To explain this further, Figure 5 shows the example measure
with its assigned moment numbers. Each event is assigned to
one or more moments so that it can be determined which, if
any, of the events are active at the same time. These moment



numbers are used to create regions. For example, the dotted
half note in the left hand of the piano part would be assigned
to all seven moment regions.
To perform searches involving simultanaeity, the query for
each part is performed separately, and then the results are in-
tersected based on their moments. Only the query results that
occur at the same time (existing in the same moment regions)
will be presented to the user.

Figure 5: The example measure of music showing mo-
ment numbers.

6.3 Regular expressions
The core search engine supports a full complement of
POSIX-compliant regular expressions. Regular expressions,
a large topic beyond the scope of this paper, are primar-
ily used for pattern-matching within a search string (Friedl
1997).
Many users find regular expressions difficult and cumber-
some ways to express searches. However, it is our intent
that most of these details will be hidden from the user by ap-
propriate interfaces. For example, regular expressions would
be very useful for an interface that allowed searching by
melodic similarity. What is important to our present research
is that regular expressions are supported in the core search
engine, leaving such possibilities open.

7. CONCLUSION
Based on existing advanced natural-language search tech-
niques, we have developed an expressive and efficient mu-
sical search engine. Its special capabilities include: sec-
ondary indices for gradiated specificity, partitions for selec-

tive scope and simultanaeity, and regular expressions for ex-
pressive pattern matching. This allows users with different
search needs to access the database in powerful and efficient
ways.
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