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ABSTRACT

We consider the music pattern matching problem—to find
occurrences of a small fragment of music called the “pat-
tern” in a larger body of music called the “score”—as a
problem of translating a set of horizontal line segments in
the plane to find the best match in a larger set of horizontal
line segments. Our contribution is that we use fairly gen-
eral weight functions to measure the quality of a match,
thus enabling approximate pattern matching. We give an
algorithm with running time O(nm log m), where n is the
size of the score and m is the size of the pattern. We show
that the problem, in this geometric formulation, is unlikely
to have a significantly faster algorithm because it is at least
as hard as a basic problem called 3-SUM that is conjec-
tured to have no subquadratic algorithm. We present some
examples to show the potential of this method for finding
minor variations of a theme, and for finding polyphonic
musical patterns in a polyphonic score.

1. INTRODUCTION

Music information retrieval is a rapidly evolving, multi-
disciplinary research area [7, 4]. One of the problems at
its core is the “music pattern matching problem”—to find
occurrences of a small fragment of music (the “pattern”)
in a larger body of music (the “score”).

The techniques required for this problem differ depend-
ing on whether the music is represented symbolically or as
audio. This paper focuses on the former; for literature on
audio representations and the pattern matching problem in
that context, see [11].

With music represented symbolically, there are still a
variety of approaches to the music pattern matching prob-
lem. Efforts are underway to compare these approaches
on large data sets, see Downie [8]. Techniques based
on string matching have been most heavily explored [15].
These include edit distance [19] and n-gram [9] techniques.
Since these algorithms work on sequences, polyphonic
music poses a great challenge, though there have been at-
tempts to handle it in this framework [16, 6].
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For polyphonic music, the pattern matching problem
is more tractable when music is represented in a richer,
more geometric format than as a 1-dimensional string—
when it is represented as line segments in the plane [23],
weighted point sets in the plane [22], or multi-dimensional
point sets [24].

This paper explores the possibilities of a particular ge-
ometric approach to music pattern matching. We model
each note as a line segment in the plane—see Figure 1.
The vertical axis corresponds to pitch and the horizontal
axis corresponds to time; in particular, the length of a line
segment indicates the duration of the note. This represen-
tation is a natural one, and has been used by many others,
for example in the Music Animation Machine [18] and by
Brinkman and Mesiti [3].

Figure 1. J.S. Bach, Invention 1, BWV 772, bars 1–2, and
the representation as line segments. Black line segments
indicate an exact match of a pattern (on the left) and an
inexact match of the same pattern (on the right).

Matching the pattern into the score means translating
the pattern relative to the score, where “translation” is
used in its mathematical sense. Imagine the pattern drawn
on a transparent sheet that can be shifted horizontally and
vertically over the score to find the best position. The ver-
tical shift corresponds to transposing the pattern. The hor-
izontal shift corresponds to locating the pattern in time.
Some matches are better than others. An exact match is a
translation of the pattern so that each line segment of the
pattern exactly matches a line segment of the score. See
Figure 1. Exact matches have limited applicability—they
encompass transposition, but allow no other variation. For
a richer set of possibilities, we introduce weight functions
and we search for matches of optimum weight.

Algorithms using this approach have been developed



for some specific weight functions. Ukkonen et al. [23]
define the weight of a match to be the sum of the lengths
of the overlaps of pattern and score line segments. They
give an algorithm to find maximum weight matches of a
monophonic pattern in a polyphonic score.

A series of papers by Ó Maidı́n [17], Francu and Neville-
Manning [12], and Aloupis et al. [1] give algorithms to
minimize a weight function that measures the area be-
tween a monophonic pattern and a monophonic score.

We introduce a weighting scheme that encompasses
both of these measures, and many more. We can, for
example, assign weights depending on the interval be-
tween a note of the pattern and a note of the score; for
example, matching notes an octave apart could contribute
more weight than matching notes an augmented 4th apart.
Mongeau and Sankoff [19] used such a weighting scheme
in their edit-distance algorithm. We include examples to
show a little of the power and flexibility of our approach.

Our purpose in this paper is to examine the efficiency
and the efficacy of this approach to music pattern match-
ing. With respect to efficiency, we give an algorithm in
Section 2 to solve the music pattern matching problem in
time O(nm log m) where m is the size of the pattern and
n is the size of the score. This is the same running time
as is achieved by Ukkonen et al. [23] in their algorithm to
maximize length of pattern-score overlap, and by Aloupis
et al. [1] in their algorithm to minimize the area between
pattern and score. The running time of our algorithm is
also competitive with other approaches to the music pat-
tern matching problem, such as edit distance techniques.
It is, however, disappointing in the sense that string pat-
tern matching can be done much more efficiently, in lin-
ear time O(n+m). The quadratic time behavior for music
pattern matching is acceptable for small input sizes, but is
prohibitively slow for huge ones, such as those envisioned
in google-style music query systems.

However, we argue in Section 3 that for this geomet-
ric approach, quadratic behaviour is the best that can be
achieved without a significant breakthrough in some ba-
sic algorithm design problems. In particular, our model of
the music pattern matching problem includes as a special
case a problem about containment of points in line seg-
ments. This latter problem is known to be equivalent, in
terms of computational complexity, to other problems for
which no one has a subquadratic algorithm, and for which
it is conjectured that no such algorithm exists [2]. This
is not a proved lower bound, but it is evidence towards a
lower bound, which, given the dismal state of lower bound
techniques, is something. We know of no previous lower
bound arguments in music pattern matching.

With respect to efficacy, i.e. whether this approach has
anything to offer music theorists and musicologists, we
give some examples in Section 4 to show what is possi-
ble with our methods. In particular, we consider some of
the examples that Selfridge-Field [20] identifies as being
problematic for automatic classification systems.

For more detail on this work, see the Master’s thesis of
the second author [21].

2. ALGORITHM

2.1. Overview

For the music pattern matching problem, we are given a
pattern of m notes and a score of n notes, represented as
line segments. We are also given a weight function with
which to evaluate a translation of the pattern in the score.
We wish to find the translation of the pattern in the score
that has maximum weight. More generally, we want not
only “the best” match, but a number of good matches.

Our algorithm is an efficient version of the most ba-
sic approach to this music pattern matching problem: to
try all possible translations of the pattern in the score, and
compute the weight of each, in order to find the transla-
tions that have maximum weight. The algorithm of Ukko-
nen et al. [23] uses this same approach, and our algorithm
can be viewed as an extension of theirs to more general
weight functions.

There are two main ingredients to an efficient imple-
mentation. One is to identify a bounded-size set of candi-
date translations that includes all possible optimum solu-
tions to the music pattern matching problem. We show a
bound of O(nm) on the number of candidate translations.
The other ingredient is to avoid computing the weight of
each translation from scratch, but rather to update effi-
ciently from one translation to the next. This is possible
for many, though not all, weight functions. We discuss the
allowable weight functions in Section 2.3, and show how
to preprocess the score in time O(n) to achieve an update
time of O(log m) to find the next translation and O(1) to
compute its weight.

Putting these together, we obtain an O(nm log m) al-
gorithm for the music pattern matching problem.

In the analysis of our algorithm, we make crucial use
of the assumption that musical pitches come from a dis-
crete set. Our examples use the 128 MIDI values based on
semi-tones, but our algorithm would apply to any discrete
set, for example scale degrees, or the base-40 representa-
tion of Hewlett [14]. Our running time of O(nm log m)
hides the dependence on 128. To put it more precisely,
our running time is actually O(nm(d + log m)) where d

is the size of the discrete pitch set. We remark that, al-
though 128 is a constant, it is a rather large constant, and
an algorithm whose running time does not depend on d

would certainly be desirable. This is possible for special-
ized weight functions and/or monophonic music [23, 1].
It remains an open problem to achieve this independence
from d for polyphonic music and our general weight func-
tions.

2.2. Notation and Input Data

A note s is represented by its starting time, σ(s), its ending
time, τ(s), and its pitch, π(s). The note s corresponds to
the horizontal line segment from the point (σ(s), π(s)) to
the point (τ(s), π(s)).

We assume that the notes of the score are given sorted
by σ(s). This is true for data coming from a MIDI file,



but other data may need to be sorted at an extra cost of
O(n log n).

For the purpose of our algorithm, we need an ordered
list of all the distinct σ(s) and τ(s) values. These are
called the time points of the score. There are at most 2n
time points, and for polyphonic music, generally fewer.
We can compute the list of time points from the sorted
score by scanning through the score once, keeping a heap
of the τ -values of the notes that are playing at the current
time. This takes time time O(n log l), where l is the max-
imum polyphony of the score—i.e. the maximum num-
ber of notes being played at any one time. We do not
assume that l is bounded by 128, but we do assume it to
be bounded by a constant.

2.3. The Weight Model

We use a weight function to measure deviations of the
translated pattern from the score. Note that translating the
pattern is “free”; only the differences between the trans-
lated pattern and the score count. Our weight functions
are additive—i.e. the weight of a particular translation of
the pattern is the sum of the weights of its notes.

It seems natural that matching a long note should count
more than matching a short note. We effect this by setting
the weight of a translated note to be proportional to its
duration. For example, a half note that perfectly matches
into the score counts twice as much as a quarter note that
perfectly matches into the score. Thus the weight of a
translated note p matching a score note s that occupies the
same time interval will be (τ(p) − σ(p))f(π(s), π(p)),
where f is a function of the pitches of s and p. More
generally, if s and p overlap in time, we use the length of
the overlap instead of (τ(p)− σ(p)).

When a translated pattern note overlaps in time with
several notes of a monophonic score, we allow pieces of
the pattern note to match with different notes of the score.
This captures what Mongeau and Sankoff [19] call “frag-
mentation”, where one note is replaced by several. The
opposite transformation, “consolidation”, is captured when
several pattern notes match to the same note of the score.
A portion of a translated pattern note may match a portion
of a note of the score only if they occupy the same time
span. See Figure 2(a).
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Figure 2. Computing the weight function: (a) weight is
(t2−t1)f(π2, π3)+(t3−t2)f(π1, π3)+(t4−t3)f(π1, π4);
(b) the effect of a shift by ε′.

Polyphonic music may have several pattern notes and
several score notes occupying the same time span. In this

case we match each (piece of a) pattern note to the single
note of the score that gives the best weight.

A very simple version of such a weight function sets
f(π(s), π(p)) to be 1 if π(s) = π(p), and 0 otherwise. In
geometric terms, the weight of a translation of the pattern
is then the sum of the lengths of the overlap of pattern and
score line segments. This is the weight function used by
Ukkonen et al. [23].

A more complicated version of such a weight function
sets f(π(s), π(p)) to be the difference between π(s) and
π(p). Using MIDI pitches, this is the number of semi-
tones in the interval between the two notes. In geometric
terms, this weight function measures the area between the
translated pattern and the score, and we want a match of
minimum weight. This weight function was used for the
case of monophonic music by Ó Maidı́n [17], Francu and
Neville-Manning [12], and Aloupis et al. [1].

More generally, we can define f(π(s), π(p)) to depend
on the interval between the two notes in a more compli-
cated way. For example, we can assign a better value to an
interval of 7 semi-tones (a perfect 5th) than to the smaller
interval of 6 semi-tones. Mongeau and Sankoff [19] use
a scheme like this in their edit-distance algorithm, assign-
ing weights to intervals in increasing order of dissonance.
The particular weighting of intervals that we use in our
examples is shown in Table 1. Note that an exact match
gets a weight of 1, and we seek a maximum weight match.
We make no claim about these weights being ideal; further
experimentation would be good—see Section 4.

Our method can extend to functions f(s, p) that depend
on other properties of the notes s and p than pitch—for
example stress, dynamics, relative position in the bar, etc.

2.4. The Set of Candidate Translations

We can think of the score as lying in a grid formed by
the 128 MIDI pitches along the vertical axis, and the time
points of the score along the horizontal axis. This grid has
size at most 2n× 128.

Claim 1 With any weight function as described above,
there will be an optimum match of the pattern into the
score that has some line segment of the pattern starting or
ending at one of these grid points.

Thus, for any weight function as described above, there
are at most 128 · 4 · nm candidate translations.

Proof:
Consider an optimum weight translation of the pattern

into the score. The translation must leave pitches on the
grid, but suppose that no line segment of the translated
pattern starts or ends at a time point. Let ε be the min-
imum shift left or right that causes the start or end of a
pattern note to reach a time point. Consider a note p of
the translated pattern. Shifting p by any ε′, −ε ≤ ε′ ≤ ε,
does not alter which notes of the score p matches to; it
only alters, by ε′, the length of the portion of p match-
ing at either end. See Figure 2(b). Thus there is a value
δ(p) such that the change in weight due to the shift of p is



ε′δ(p). More precisely, if the initial portion of the trans-
lated note p matches to score note sσ and the final por-
tion of p matches to score note sτ , and p has been trans-
lated to pitch π, then δ(p) = f(π(sτ ), π) − f(π(sσ), π).
The change over all notes is ε′

∑
p
δ(p). If

∑
p
δ(p) is

positive, then a positive ε′ would increase the weight; if∑
p
δ(p) is negative, then a negative ε′ would increase the

weight. Since we assumed the translation to be of opti-
mum weight,

∑
p
δ(p) must be 0, and therefore a shift of

ε does not change the weight, and lines up the start or end
of a pattern note with a time point. Thus there is an opti-
mum match on the grid. 2

We remark that the number of candidate translations
can be reduced to 4nm in some cases because there will
be an optimum match in which some line segment of the
pattern starts [or ends] exactly where a line segment of the
score starts [or ends]. This happens if the weight function
only measures exact overlap of pattern and score line seg-
ments. With the distance weight function, this property
fails, and the number of candidate translations goes up by
a factor of d. For the pure distance function, Aloupis et
al. [1] are able to avoid looking at all the candidate trans-
lations, but we see no way to do this for our more general
weight functions and polyphonic music.

2.5. Preprocessing

In order to quickly determine the weight of a translated
note, we precompute a weight matrix W based on the
score and the given weight function. Matrix W has a row
for each of the 128 MIDI pitches, and a column for each
of the time points of the score, of which there are at most
2n. Thus it has size at most 128× 2n, which is O(n).

For pitch π and time point t, the corresponding matrix
entry, W (π, t), contains the weight factor to be applied
to a note of the pattern translated to pitch π, and going
from time point t to the next time point t′. Thus such a
translated pattern note contributes (t′ − t)W (π, t) to the
weight of a match. In terms of the function f described
above, W (π, t) = max{f(π(s), π) : s is a score note that
includes the time interval (t, t′)}.

We compute W by iterating through the notes s of the
score, and updating W (π, t) as π ranges through the 128
pitch values, and t ranges through the time points from
σ(s) up to, but not including, τ(s).

Each of the 128× 2n matrix positions will be updated
at most l times, where l is the maximum polyphony of the
score. As mentioned above, we assume l to be a constant,
so the time to set up W is at most O(n). More precisely,
with a pitch set of size d, and maximum polyphony of l,
the time to compute W is O(dln).

We can reduce this to O(dn log l) by computing W

across rows, and using a heap to compute the best weight
for each matrix entry. We note that if the space to store
the matrix is considered prohibitive, we can dispense with
the matrix altogether, and simply compute weights as we
need them during the main algorithm.

2.6. The Main Matching Algorithm

We try each possible candidate translation (t, π), where t

is the translation applied to the time coordinate, and π is
the translation applied to the pitch coordinate.

We try each value of t, in order. We call it an event
when the start or the end of a translated pattern note lines
up with a time point of the score. Lining up the start of
pattern note p with time point u occurs at translation value
t = u − σ(p). Lining up the end of the pattern note with
time point u occurs at translation value t = u− τ(p). We
go through the events in order of their translation values.
Note that several events may occur at the same translation
value, but for book-keeping purposes we handle them one
at a time. The number of events is at most 4nm.

To go through the events in order, we keep, for each
pattern note p, two pointers pσ and pτ into the list of
time points. The pointer pσ gives the time point for the
next event involving the start of note p, and pτ gives the
time point for the next event involving the end of note p.
We make a heap of the translation values corresponding
to these 2m forthcoming events. This allows us to find
the next event in O(log m) time. Each of the 2m pointers
makes one pass through the list of time points.

As we go through the events—i.e. the values of t—we
maintain information for each value of π—i.e. each trans-
position of the pattern. There are at most 2 · 128 values of
π. The information we maintain includes the weight for
the candidate translation (t, π), but also other information
that allows us to update each of these weights in O(1)
time. Specifically, we store, for each value of π, and each
pattern note p, a value δπ(p) with the property that a small
change t← t+ε changes p’s contribution to the weight of
the match at transposition value π by the amount εδπ(p).
Suppose that π translates note p to pitch ν = π(p) + π.
The start of p has just passed time point prev(pσ) and
the end of p has just passed time point prev(pτ ). Then
δπ(p) = W (ν, prev(pτ ))−W (ν, prev(pσ)).

If wπ is the weight of the pattern translated by (t, π)
then the change to wπ caused by t← t + ε is ε

∑
p
δπ(p).

We maintain ∆π =
∑

p
δπ(p). At an event involving

pattern note p, we must update δπ(p), ∆π , and wπ for
each value of π. If this event is for the start of p, then
δπ(p) changes by δπ = W (ν, prev(pσ)) −W (ν, pσ). If
the event is for the end of p then δπ(p) changes by δπ =
W (ν, pτ )−W (ν, prev(pτ )).

Suppose that the current event occurs at translation value
t′, and that the previous event occurred at translation value
t (possibly t = t′). The changes are as follows: wπ ←
wπ + (t′ − t)∆π; δπ(p)← δπ(p) + δπ; ∆π ← ∆π + δπ .
Each event involves a single pattern note p, but we make
changes for each of the O(d) settings of π, for a total time
of O(d).

Altogether, we have O(nm) events, time O(log m) to
find the next event, and time O(d) to update at each event—
for a total running time of O(nm(d + log m)), and space
of O(dn). Finding the k best matches adds O(k) to the
time and space. (We use linear time median finding.)



3. BARRIERS TO A FASTER ALGORITHM

Our algorithm for the music pattern matching problem
takes time O(nm log m) for a score of size n and a pat-
tern of size m. A subquadratic algorithm with running
time O(n+m) (achievable for string pattern matching) or
even O((n + m) log n), would be vastly preferable, and
would make the algorithm practical for use in large music
databases. In this section we show that such an efficient
algorithm will be a major challenge.

More specifically, we show that the music pattern match-
ing problem, in this geometric formulation, includes as a
very special case a problem called “Segments Containing
Points” which is at least as hard as the 3-SUM problem—
and that problem is conjectured to have no algorithm with
a subquadratic running time. We expand on these points in
the remainder of this section. For background on O(·) and
o(·) notation, see [5]. The two problems are as follows:

3-SUM: Given a set of n integers, does it contain numbers
a, b, c with a + b + c = 0?

Segments Containing Points (SCP): Given a set P of m

numbers and a set Q of n pairwise-disjoint intervals, is
there a translation u such that P + u ⊆ Q?

The geometric formulation of the music pattern match-
ing problem includes SCP as the very special case where
the pattern and the score have notes only on one pitch, the
pattern notes are very short, and the 0-1 weight function
is used.

Barequet and Har-Peled [2] prove that an algorithm
with running time o(nm) for the SCP problem would im-
ply an algorithm with running time o(n2) for the 3-SUM
problem. Thus SCP is “3-SUM hard”. The class of 3-
SUM hard problems was introduced by Gajentaan and
Overmars [13], who show that a number of different prob-
lems are 3-SUM hard. Although this is not a proved lower
bound (see [10]) a subquadratic algorithm for any of these
problems would be a major breakthrough.

Thus a subquadratic algorithm for the geometric ver-
sion of the music pattern matching problem would have
implications far beyond music information retrieval. From
a practical point of view, at least for small patterns, the
factor of 128 in our algorithm is probably more prohibitive
than the factor of m. Certainly, given the above, it is a
more tractable challenge to attempt to reduce the depen-
dence on the size of the pitch set.

4. EXAMPLES AND DISCUSSION

For all our examples we use the weights shown in Table 1,
which are somewhat similar to those used by Mongeau
and Sankoff [19]. We assign a very good weight to a semi-
tone, because we model pitches on a scale of 12 semi-
tones, rather than as scale degrees. Thus a pattern repeated
at a different scale degree will in general be off by semi-
tones. We also assign a good weight to an octave, and to
semi-tones on either side of an octave.

Our first example is the Bach Two-Part Invention, Num-
ber 1, BWV 772, the first two bars of which are shown in

Interval apart (in semi-tones) Weight
perfect unison (0) 1
minor 2nd (1) 0.9
major 2nd (2) 0.6
minor 3rd (3) 0.4
major 3rd (4) 0.4
perfect 4th (5) 0.2
perfect 5th (7) 0.6
minor 6th (8) 0.3
major 6th (9) 0.3
major 7th (11) 0.7
perfect octave (12) 0.8
minor 9th (13) 0.7
all other intervals 0

Table 1. The weighting scheme used for our experiments
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Figure 3. Selected bars showing matches of the first pat-
tern in Bach’s Invention.

Figure 1. Our first pattern consists of the first 8 notes of
the piece, but with the final G replaced by a 16th note D,
as it appears in inverted form. Figure 3 shows the first
and last four bars of the results of a search for the best 20
matches. There are 18 “correct” matches in the piece. Our
algorithm assigns them weights between 90% and 100%,
and nicely separates them from the extraneous matches—
except that it finds a good match (92.5%) of the pattern
into the final chord. Since our pattern has so few distinct
pitches, it matches quite well against the two notes of a
minor 3rd in a chord. It might be possible to avoid such
anomalies by assigning extra weight when the start of a
pattern note matches the start of a score note.

When we search for the inversion of our first pattern,
the match into the final chord gets a lower weight than the
19 valid matches, so our algorithm correctly separates the
good matches from the extraneous ones. See Figure 4.

Our second example is the Andante movement of Mozart’s
Piano Sonata K311, with the theme of the first 2 bars as
the pattern. See Figure 5. This is one of the examples
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Figure 4. Matches of the inversion of the first pattern in
bars 1–4 of Bach’s Invention.

discussed by Selfridge-Field [20]. She points out that the
recurrences of the theme differ slightly from each other,
making automatic classification difficult. Some 6-bar seg-
ments of the result of our search are shown in Figure 7.
Bars are numbered as though the repeat were explicitly
written out. The first match does not receive 100% be-
cause the pattern omits the grace note, and because the
MIDI file, produced from a human performance, has the
note durations shortened. The top 9 matches found by our
algorithm are good ones, and include all the variants listed
by Selfridge-Field. The final variant she lists is the syn-
copated one shown in Figure 6 (top), which occurs in bar
86. Our algorithm detects this as the 9th match, at weight
84.4%. See the last pane of Figure 7. The 10th match,
starting just before bar 54, is extraneous, but the 11th, at
bar 50, is good. See the third pane of Figure 7.

Figure 5. W.A. Mozart, Piano Sonata in D major K311,
2nd movement, bars 1–2, with the theme in the right hand.

Figure 6. Two occurrences of the theme in the right hand:
bars 86–87 (top) and bars 90–91 (bottom).

Unlike in the Bach example, there are occurrences of
the theme that are ranked poorly by our algorithm and do
not make it into even the top 20 matches. We have iden-
tified 5 such occurrences. Four of them are just artifacts
of the particular MIDI file we used: in bars 38–39 and
74–75, the theme occurs in the left hand, in thirds, but
the performer played these notes staccato, so the lengths
of the notes in the MIDI file are roughly half of what the
score indicates (this can be seen in the 2nd pane of Figure
7), and the weight computed by our algorithm is commen-
surately reduced. (Actual values are about 60%.) When

we change the lengths of these notes to accurately reflect
the written score, these matches receive weights of above
90%, and would rank among the “good” matches. The
fifth occurrence of the theme that our algorithm misses is
more interesting. See Figure 6 (bottom) and bars 90–91 of
Figure 7. To human eyes and ears, this is a variant of the
theme, but it poses quite a challenge for automatic pattern
detection!

1 2 3 4 5 6 7

C

95.3 95.393.4 93.4 89.488.6

86.7

85.5 84.4

81.981.6

36 37 38 39 40 41 42

C

95.3 95.393.4 93.4 89.488.6

86.7

85.5 84.4

81.981.6

50 51 52 53 54 55 56

C

95.3 95.393.4 93.4 89.488.6

86.7

85.5 84.4

81.981.6

86 87 88 89 90 91 92

C

95.3 95.393.4 93.4 89.488.6

86.7

85.5 84.4

81.981.6

Figure 7. Selected bars showing matches of the theme in
Mozart’s Piano Sonata.

Our third example is the C minor fugue from Bach’s
Well-Tempered Clavier, Book I, the first two bars of which
are shown in Figure 8. Our polyphonic pattern comes
from bar 11—see Figure 9. The top voice of the pattern is
the first part of the fugal subject transposed into the rela-
tive major key (E[ major); the bottom voice of the pattern
is the corresponding countersubject, which starts a minor
6th and an additional octave below the top voice.

Figure 10 shows selected bars of the result of a search
for the best 15 matches. The top 7 matches, with weights
above 94%, all appear in these bars. They are very good
matches, differing in at most a few semi-tones from the
pattern. These matches highlight the occurrences of the
pattern in two of the fugal episodes, which modulate to



Figure 8. J.S. Bach, Fugue in C minor, Well-Tempered
Clavier Book I, bars 1–2.

Figure 9. Bar 11 of Bach’s Fugue, the source of our pat-
tern, shown at right.

different keys.
Our weight function is lenient with translated notes that

fall an octave away from notes of the score. Consequently,
we find matches of the pattern where the fugal subject is
in the top voice, and the countersubject starts only a mi-
nor 6th below the subject in the bottom voice. In Fig-
ure 10 these appear in bar 3 and in the second halves of
bars 22 and 23. Observe that the latter matches are found
twice over, which is logical. (The “phantom” partner of
the match in bar 3 has lower weight.) Apart from phan-
toms, our algorithm properly separates the valid matches
from the extraneous ones.
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Figure 10. Selected bars showing matches of the pattern
in Bach’s Fugue.

4.1. Discussion

These examples show that our algorithm can be useful in
finding occurrences of a motif in polyphonic music, even
when there are melodic variations, and even when the mo-
tif is polyphonic. Although our algorithm has the limita-
tion that it does not permit changes to the durations of
notes, an example of minor rhythmic variations of a short
motif was still detected.

On the other hand, our algorithm misses matches in
which the notes of the pattern have been shortened in the
score. Our algorithm also produces false positives when
a pattern with a very small range of pitches matches into
long chord notes of the score. Both issues might be ad-
dressed by giving greater weight to the starts of notes.
This would alleviate the first problem, since it would di-
minish the penalty when a pattern note matches to a note
of the score of shorter duration. The second problem would
also be mitigated, since pattern notes matching into the
middle of a note of the score would receive less weight.

Finally, we mention that our implementation was done
in the high-level language Mathematica, so it is not sensi-
ble to report the computation time for these examples.

5. CONCLUSIONS

In this paper we have explored the possibilities and limita-
tions of an approach to music pattern matching that uses a
very natural geometric representation of music, and turns
the problem into that of finding a “best” translation of a
small set of line segments into a larger set. This geometric
approach has been used before, but has not been explored
as thoroughly as string matching techniques, even though
it successfully deals with polyphony.

Our contribution is to show how this approach can be
used together with fairly general weight functions to mea-
sure the quality of a match. This opens up the possibil-
ity of a rich range of approximate music pattern match-
ing techniques. Our experiments only scratch the surface
of what may be possible. It is easy to imagine a vari-
ety of enhancements, for example: incorporating infor-
mation about the key of tonal music; adding information
about dynamics and stress; weighting more heavily those
matches that occur at the beginnings of notes; allowing
the user to specify which notes of the pattern are more
important, etc.

Our algorithm runs in time O(nm(d + log m)) where
d is the size of the pitch set, n is the size of the score, and
m is the size of the pattern. This is fine for small patterns,
but too expensive for larger ones. We have argued that
the factor O(nm) is likely to be very hard to improve.
Improving the dependence on d is perhaps more tractable,
and also more relevant for reasonably sized patterns.

6. ACKNOWLEDGEMENTS

We thank Erna Van Daele for musical discussions and ad-
vice; Ian Munro for the idea of how to find the best k



matches; and Therese Biedl, Dan Brown, and Anne-Marie
Donovan for useful suggestions.

7. REFERENCES

[1] G. Aloupis, T. Fevens, S. Langerman, T. Matsui,
A. Mesa, D. Rappaport, and G. Toussaint. Comput-
ing the similarity of two melodies. In Proceedings
of the 15th Canadian Conference on Computational
Geometry, pages 81–84, 2003.

[2] G. Barequet and S. Har-Peled. Polygon-containment
and translational min-Hausdorff-distance between
segment sets are 3SUM-hard. International Jour-
nal of Computational Geometry and Applications,
11(4):465–474, 2001.

[3] A. Brinkman and M. Mesiti. Graphic modeling of
musical structure. Computers in Music Research,
3:1–42, 1991.

[4] D. Byrd and T. Crawford. Problems of music in-
formation retrieval in the real world. Information
Processing and Management, 38:249–272, 2002.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and
C. Stein. Introduction to Algorithms, 2nd edition.
McGraw Hill, 2001.

[6] M.J. Dovey. A technique for “regular expression”
style searching in polyphonic music. In Proceedings
of the 2nd Annual International Symposium on Mu-
sic Information Retrieval (ISMIR 2001), pages 179–
185, 2001.

[7] J.S. Downie. Music information retrieval. An-
nual Review of Information Science and Technology,
37:295–340, 2003.

[8] J.S. Downie. Toward the scientific evaluation of mu-
sic information retrieval systems. In Proceedings of
the 4th International Conference on Music Informa-
tion Retrieval (ISMIR 2003), pages 25–32, 2003.

[9] S. Downie and M. Nelson. Evaluation of a simple
and effective music information retrieval method. In
Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 73–80, 2000.

[10] J. Erickson. Lower bounds for linear satisfiability
problems. Chicago Journal of Theoretical Computer
Science, 1999(8), 1999.

[11] J. Foote. An overview of audio information retrieval.
Multimedia Systems, 7:2–11, 1999.

[12] C. Francu and C.G. Nevill-Manning. Distance met-
rics and indexing strategies for a digital library of
popular music. In Proc. IEEE International Confer-
ence on Multimedia and EXPO (II), pages 889–894,
2000.

[13] A. Gajentaan and M.H. Overmars. On a class
of o(n2) problems in computational geometry.
Computational Geometry:Theory and Applications,
5(3):165–185, 1995.

[14] W.B. Hewlett. A base-40 number line representation
of musical pitch notation. Musikometrika, 50:1–14,
1992.

[15] K. Lemstrom. String Matching Techniques for Music
Retrieval. PhD thesis, University of Helsinki, De-
partment of Computer Science, 2000.

[16] K. Lemstrom and J. Tarhio. Transposition invari-
ant pattern matching for multi-track strings. Nordic
Journal of Computing, 10:185–205, 2003.
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