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Abstract

Multi-timescale visualization techniques for displaying the
output from key-finding algorithms are presented in this pa-
per. The horizontal axis of the key graphs represents time in
the score, while the vertical axis represents the duration of
an analysis window used to select music for the key-finding
algorithm. Each analysis window result is shaded according
to the output key’s tonic pitch. The resulting diagrams can be
used to compare differences between key-finding algorithms
at different time scales and to view the harmonic structure
and relationships between key regions in a musical composi-
tion.

1 Motivation

A tonal composition is usually described as being in a par-
ticular key, such as Brahms’ Symphony No. 4 in E minor, or
Beethoven’s Piano Sonata in F minor, Op. 57; however, rarely
does a piece of music maintain a single key center through-
out its entirety. Thekeyof a piece typically starts and ends
the piece, but other key centers are used somewhere in the
middle of a piece to give form to the music. A simple stereo-
typical tonal piece might start in the tonic key, modulate to
the dominant, and then return to the tonic key by the end of
the piece.

Currently available key-finding algorithms are not very
sensitive to identifying modulations, and if given a selection
of music which contains several modulations, the algorithms
can only identify what the most likely key is for the entire
selection. If there are two key areas in a selection of mu-
sic, then the algorithm hopefully assigns the stronger key the
best score while the other key area hopefully is assigned the
second best score. A key identification error may occur if
an entire piece of music is presented to a key-finding algo-
rithm, since the secondary key areas may overpower the start-
ing/ending key or bias the primary key towards a closely re-
lated key, such as the dominant or relative minor key areas.

One of the best algorithms for determining the key in a
region of music is the Krumhansl-Schmuckler key-finding al-

KS algorithm analyses
BWV notated key prelude fugue
846 1. C major C major C major
847 2. C minor C minor C minor
848 3. C] major C] major G] major
849 4. C] minor C] minor C] minor
850 5. D major D major D major
851 6. D minor D minor D minor
852 7. E[ major E[ major E[major
853 8. E[/D] min. E[minor D] minor
854 9. E major E major E major
855 10. E minor E minor E minor
856 11. F major D minor F major
857 12. F minor F minor F minor

Table 1: KS algorithm results when applied to entire WTC
book 1 compositions compared to actual tonic keys of the
music. Identification errors are underlined.

gorithm based on probe-tone ratings generated from experi-
mental results (Krumhansl 1990). The KS algorithm is im-
plemented in thekey program contained in the Humdrum
Toolkit for musical analysis (Huron). Applying the KS algo-
rithm to an entire piece, table 1 lists the analyzed keys for
the first half of the first book of J.S. Bach’s Well-Tempered
Clavier using thekey program. The Well-Tempered Clavier
is an excellent source of test material for testing key-finding
algorithms, because each set of prelude and fugue in the col-
lection are in a different key, starting in C major and then pro-
gressing chromatically through all 24 major and minor keys.

Table 1 points out two common errors generated by key-
finding algorithms in general. The first error is in fugue no. 3
where the KS algorithm identifies the dominant rather than
the correct tonic key of C] major. The second error occurs
in the eleventh prelude where the relative minor is identified
rather than the key of F major.

These two errors are primarily due to more than one key-
area being present in the analyzed music, causing slight off-
sets in the tonic key weightings such that a closely related key
becomes more likely for the algorithm than the actual key.



A fifth-relation error can occur if the secondary key areas are
predominantly all above or below the tonic key in the circle
of fifths. The second error is a modality error. The correct
key signature was identified, but the distribution of notes in
the music was such that the tonic was incorrectly identified.

Of course, the key identification errors in the two com-
positions from the Well-Tempered Clavier could be fixed by
only applying the algorithm to the first and last parts of the
music, since these sections are more likely to contain the tonic
key. However, side-stepping the issue in this manner creates
other problems: (1) How much of the beginning and ending
of the piece should be examined? and (2) What if the compo-
sition starts in one key and ends in another? The true problem
to solve is how to identify correctly regions of stable key cen-
ters and regions of modulation in a piece of music.

If a more detailed view of a pieces’s key structure is de-
sired beyond the “key” of the piece, then a moment-by-moment
view of the key centers in the piece will give a much more de-
tailed description of the piece. Krumhansl proposes applying
a sliding analysis window to the notes in a piece to generate
localized key measurements. This gives a good overview of
the key relationships in the music, but results can be sensitive
to the analysis window size. A problem with this sliding win-
dow technique is that the global importance of a local key is
not apparent in the local context. A music theorists would as-
sign a sequence of key centers to a piece of music using both
the global and local characteristics of the music. If a region
is difficult to assign a key label, then music outside the local
region will be considered. It is very difficult to have a com-
puter generate a reasonably accurate sequence of musically
relevant key centers.

Key visualization techniques described in the following
section avoid the problem of choosing a fixed analysis win-
dow duration by instead using all possible analysis window
durations. The interpretation of the local key problem is par-
tially solved with these display methods because the height
to which a key region survives in a diagram demonstrates the
relative strength of that key region. Strong modulations are
represented by large vertical structures, while tonicizations
are represented by smaller vertical structures.

It is also possible to view the behavior between various
key-finding algorithms at different analysis window sizes and
to see how they interact around regions of modulation. Key-
algorithms can then be compared using the diagram methods
below to see how the different algorithms handle the same
music at various time scales. Numerous computational algo-
rithms for identifying keys using computers have been pro-
posed since the 1960’s. See recent work and surveys on key-
finding algorithms by Temperley (1997), Chew (2000) and
Shmulevich and Yli-Harja (2000). Sleator and Temperley
make the source code for their harmonic analysis programs
available on the web (Sleator and Temperley).

2 Diagram Types

2.1 Key-To-Color Mappings

To display data from key-finding algorithms in a compact
visual manner, each key is mapped to a different color. The
principle key-to-color mapping being used is shown in ta-
ble 2. The colors of the rainbow are mapped onto the circle
of fifths collapsed to the seven diatonic pitches. For example,
the key C is assigned the color green. Ascending the circle
of fifths yields G (blue), D (indigo blue), A(purple), E (red).
Going the opposite direction in the circle of fifths takes you
through the rainbow colors in the opposite direction: F (yel-
low), B[ (orange), E[ (red).

diatonic diatonic
pitch class color pitch class color

E red G blue
B orange D indigo
F yellow A violet
C green

root (R, G, B) root (R, G, B)
C[ ( 36, 255, 0) G[ ( 54, 200, 218)
C ( 0, 255, 0) G ( 63, 191, 255)
C] ( 9, 246, 36) G] ( 63, 177, 255)
D[ ( 63, 109, 255) A[ (118, 41, 255)
D ( 63, 95, 255) A (127, 31, 255)
D] ( 73, 86, 255) A] (145, 27, 219)
E[ (237, 4, 36) B[ (255, 109, 0)
E (255, 0, 0) B (255, 127, 0)
E] (255, 18, 0) B] (255, 145, 0)
F[ (255, 237, 0) F] (218, 255, 0)
F (255, 255, 0)

Table 2: Sample RGB color mappings for key tonics.

This color mapping is designed to be intuitively easy to
navigate, since closely related keys map into closely related
colors. The only drawback of this mapping is that there are
only 7 colors while there are 12 (or more) pitch classes—
notice that E and E[ have the same red color. Since enhar-
monic keys are located far apart in key space, this mapping
is unambiguous for most tonal music and should only cause
confusion in rare cases. A monochromatic color mapping has
been used in this paper for printing in black-and-white, but
it is possible to view example figures from this paper on the
World Wide Web (Sapp).

Of course, the choice of a color mapping from key to color
is arbitrary, and different color mappings may be suitable for
different types of music. For tonal music, the relationship
between keys is predominantly based on the circle of fifths;
therefore, arranging the circle of fifths onto the rainbow is ad-
vantageous. Many other types of color mappings are possible,
including:



� indicating major/minor modalities with brightness. For
example C major could be light green and C minor
could be dark green.

� indicating sharp keys brighter, and flat keys darker to
unambiguous enharmonic keys, for example C-flat could
be dark green and C-sharp could be light green.

� usinghueinstead of the rainbow to maximize distance
between keys in color space.

� using a monochromatic mapping for optimal display in
black and white (as well as for color-blind people).

� displaying music in the key colors of its synesthetic
composer.

It is also possible to label the tonic of a composition in a cer-
tain color, and then label all other key areas in relation to the
tonic. But for this system to work, you would need to guar-
antee that the correct key has been chosen as the tonic key.

2.2 Type 1: discrete time/discrete roots

The first type of diagram for key display divides a piece
of music into successively smaller analysis window units as
outlined in figure 1. The top level of the diagram analyzes all
of the notes in the selection to generate a key identification.
The second level of the diagram then splits the music into two
equal parts and generates a key for the music in each half, and
so on. Each successively lower level of the diagram divides
the music into a greater number of equal-sized analysis win-
dows which get continually smaller in duration.

Figure 1: Type 1 analysis window configuration.

The lowest level will then divide the musical selection
into N parts. The duration of the analysis windows in this
level aretotal-time/N time units wide. TypicallyN is set to
the number of beats in the music, but any smaller or larger
value ofN can be used as well. When using a value ofN
equal to the value of beats in the music, the bottom level of
the diagram displays chord roots, and the top levels represent
the strong key areas present in the piece.

If the N levels of the vertical axis are displayed with
equal heights, the lower levels overpower the higher levels
as demonstrated on the left side of figure 2. For example, the
ratio between the first and second levels at the top of the dia-
gram is a ratio of 1/2 or a 50% decrease in window duration.
The ratio between the 100th and 101st levels is 100/101 or a
1% decrease in duration. The higher the number of divisions,
the less change there is between analysis window sizes, and
therefore less importance should be given to the visual impact
between levels.

Figure 2: Type 1 plot analysis window layout. Left: linear
vertical scale; Right: logarithmic vertical scale.

To correct for the emphasis on larger division levels, the
vertical axis can be adjusted with a logarithmic scaling. A
strong logarithmic scaling weights the upper levels of the dia-
grams too much, so good scalings which equally emphasize
the top level and bottom levels of the diagrams is generated
by this example scaling:

m =M

�
1�

log(n+ 1)

log(N + 1)

�

WhereN is the total number of analysis window levels,n is
the current level indexed from 0,M is the number of vertical
pixels in the picture, andm is y-axis maximum pixel location
of leveln with respect to the bottom of the picture. The right
side of figure 2 displays this type of mapping where the areas
of the window blocks are closer in proportion to the change
in window duration between levels.

Figure 3 displays a type 1 key diagram for the first move-
ment of Mozart’s Viennese Sonatina No. 1 in C major. The
horizontal axis displays the music from the start (left) to the
ending (right) of the piece. The vertical axis displays the anal-
ysis results for small window durations at the bottom of the
picture and larger analysis window durations at the top of the
picture. Pitch labels identify important key/chord regions in
the piece. Notice that the key of C forms the dominant shaded
area of the picture which coincides with the identification of
this piece being in thekeyof C major.

The bottom portion of fig. 3 represents individual chords.
As the analysis windows get larger towards the top of the pic-
ture, the chords merge with adjacent chords. Some chords get
absorbed quickly into adjacent chords, particularly if they are
remotely related to the surrounding chords. By the middle of
the vertical axis, the strongest chords start to represent key



Figure 3: Mozart Viennese Sonatina No.1 in C Major,
Mvmt.1: type 1 plot with logarithmic vertical scale.

areas. Some key areas have a short duration and are absorbed
into stronger keys areas higher up in the diagram. The top
portion of the figure shows the major key regions of the piece
which are primarily the keys of C major and G major.

The sonatina movement is clearly in C major, since the
upper left and right portions of the diagram are in C. The fig-
ure also shows a strong region of G major in the 2nd quarter
of the piece. There is a distinction between the F modulation
near the middle of the piece and the temporary modulation
(tonicization) of F closer to the end of the piece. Toniciza-
tions do not extend towards the top of the piece as high as
true modulations into a key area.

The striped bands for the key of A in the middle of the
movement demonstrate weakness in the particular key-finding
algorithm being used. The A key region is probably a com-
promise in the algorithm between an overlapping region of
D minor and F major. Another problem is that the F key area
contains a region of C inside. This C region is due to domi-
nant seventh chords in the key of F, so the C regions should
be expected to be smaller and incorporate into F faster than
the plot shows.

2.3 Type 2: continuous time/discrete roots

The primary drawback of type 1 key diagrams is that quan-
tization errors increase in the higher analysis window levels
where there are fewer divisions to represent the entire piece.
Therefore, a second type of diagram is presented in this sec-
tion which gives equal resolution at all time scales. Instead
of coloring the entire analysis window duration with the key
color, a single pixel centered in the middle of the analysis
window is drawn. Note that computation time for type 2 plots
is about 30 to 50 times greater that for type 1 plots.

Figure 4 gives an overview of the windowing method used
to create type 2 key diagrams. The top level of the diagram
contains an analysis window that can hold the entire piece of
music. For that window, a single pixel is displayed at the top
of the diagram. To generate the lower parts of the diagram,
the analysis windows continually get smaller. For each win-
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Figure 4: Type 2 analysis window arrangement.

dow duration, the analysis window is slid continuously over
the entire piece of music, placing the result of the key-finding
algorithm at the center point of the analysis window. Typi-
cally, the analysis windows of the lowest level in the diagram
contains one beat of the music. The placement of the analysis
output at the center of the window generates a characteristic
triangular shape which makes the diagram easy to distinguish
from type 1 plots.

Increased resolution is a big advantage of type 2 plots over
type 1 plots. Figure 5 now shows the Mozart sonatina move-
ment with a very nicely formed region in the key of G. Also,
the development regions near the center of the movement are
easier to distinguish since they are less fragmented.

Figure 5: Mozart sonatina: type 2 plot with linear vertical
scale (compare to fig. 3).

Just as there was a problem with the vertical scale in type 1
plots which show too much of the lower time-scales, figure 5
displays too much of the higher time-scales. Note that the
second level of a type 1 plot is now found midway on the ver-
tical axis in a type 2 plot. The unaltered form of the type 2
plots is equivalent to a strong logarithmic scaling of the type 1



Figure 6: Mozart sonatina: type 2 plot with logarithmic ver-
tical scale (compare with fig. 5.) The vertical scale is approx-
imately the same as in fig. 3.

plots. Therefore, a more balanced view of the top and bottom
levels can be achieved by scaling the vertical axes logarithmi-
cally, as shown in figure 6.

2.4 Type 3: continuous time and roots

Most key-finding algorithms calculate the likelihood of
every possible key and then assign the key with the high-
est score as the best key to fit the music. For example, Ta-
ble 3lists the KS algorithm scores of each possible key for
the entire Mozart sonatina movement. The third category of
key diagram described in this paper takes these secondary key
probabilities into account to generate color-interpolated pic-
tures of key based on the general form of type 2 plots.

r-value key r-value key
0.945 C major -0.068 E[ major
0.770 G major -0.158 E major
0.665 E minor -0.160 A major
0.481 C minor -0.260 G] major
0.479 A minor -0.321 C] minor
0.417 F major -0.415 B major
0.403 G minor -0.420 G] minor
0.163 D minor -0.436 F] minor
0.110 D major -0.450 B[ minor
0.063 F minor -0.557 C] major
0.027 B[ major -0.646 D] minor
0.019 B minor -0.650 F] major

Table 3: KS algorithm r-value scores of each possible key for
the Mozart sonatina, sorted from most likely (highest r-value)
to least likely key.

Figure 7 plots algorithmic score weightings of the four
primary key centers taken from the midsection of figure 6.
In this figure the relative strengths of each key score at any

Figure 7: Continuous nature of some key-finding algorithms’
key scores. Bottom part of figure is a midrange zoom-in on
fig. 6. Top part of figure shows the continuous key-finding
scores for important key regions highlighted in the lower fig-
ure.

given moment in the music is plotted. Type 1 and 2 key dia-
grams will only display the most likely key at any given mo-
ment, which in this case is the sequence: C, G, A, F, and then
a return to C. What is lacking in these visualizations is an
indication of how certain the algorithm is in its choice of key.

Two measurements in specific can be extracted from in-
formation shown in figure 7 to give a more continuous key
diagram. (1) Clarity: The higher the score, the better the hy-
pothesis key fits the music. Regions of musical stability are
likely places to find a clear key center. For example, the reca-
pitulation into C major in the first movement of the sonatina
coincides with the highest score for C major. (2) Ambiguity:
regions of development such as in the middle of the sonatina
consist of closely scored keys. The algorithm has difficulty in
choosing the best key in this case, because modulations hap-
pen so quickly compared to the more stable exposition and
recapitulation. Key identification errors are more likely in re-
gions of high ambiguity.

Experiments in displaying just the clarity or ambiguity
yield promising diagrams which might prove useful in mu-
sic analysis; however, key scores are difficult to interpret and
relate to each other over different time scales. Figure 8 dis-
plays a plot of clarity between the best and second best keys.
Notice that the short development region in the middle of the
movement is clearly indicated by the dark band rising verti-
cally in the center of the plot. Plots of ambiguity look similar
to the regular best-key plots because they usually outline the
borders between key areas.

Interpolating the colors of the best and second best keys



Figure 8: Plot ofclarity – light regions indicate higher cer-
tainty of correctness by the key-finding algorithm and darker
regions indicate little difference in the scores between best
and second best keys.

gives a nice continuous diagram. Figure 9 shows a plot of the
second best keys for the sonatina. Notice that in this piece,
the second best key is usually tonic in a dominant section,
and the dominant in a tonic section, although there is a strong
tendency towards the subdominant during the beginning of
the piece and close to the final cadence.

Figure 9: Mozart sonatina: second-best keys. Compare to
fig. 6 which shows the best roots.

Figure 10 is an interpolation between the best and second
best keys at each point in figures 6 and 9. For each analysis
window size, the maximum clarity between the best and sec-
ond best score is used to normalize the interpolation: at the
point of maximum score separation, the best key is displayed
fully in its own color. At points during the piece where the
best and second best keys trade places (at 100% ambiguity),
the color assigned to the diagram is halfway between the col-
ors of the two key centers. Notice that the higher levels of
secondary key regions (G and F) in figure 10 blend smoothly

into the primary key of C major.
The interpolation for figure 10 was done linearly in the

RGB color space. Interpolation in another color space, such
as HSI (Hue-Saturation-Intensity) may be possible, but pro-
ducing visually pleasant diagrams with this type of interpola-
tion has been difficult to control. An HSI interpolation could
be used to distinguish between modulations by fifths from
other types of more distant key modulations. The more dis-
tant the modulation, the higher would be the saturation of the
colors in the modulation region.

Figure 10: Mozart sonatina: type 3 plot interpolating between
best root (fig. 6) and second best root (fig. 9).

3 Applications

3.1 Comparing key-finding algorithms

The key diagrams described in the previous section were
developed for two purposes: (1) examine the interaction be-
tween key regions in a piece of music, and (2) compare the be-
havior of different key-finding algorithms. Most of the plots
in this paper use an algorithm I am currently developing for
finding the roots of chords. This algorithm matches the output
of the KS algorithm for the most part, although the calcula-
tions to derive the analysis are completely different.

Figure 11 shows a type 2 plot of the Mozart sonatina
movement which can be compared directly to figure 6. Good
features: (1) definition of C major at start of piece is clearer
than in figure 6, (2) dominant key areas in the piece are C and G,
(3) incorrect A key region in middle of the piece is less pro-
nounced, (4) more solid F key region in middle of the piece,
(5) nicely behaved boundary between G and C key areas.
Not-so-good features: (1) E minor key tendencies near end
of the movement (modal error from G major), and (2) incor-
rect identification of key regions just before F major area.



Figure 11: Mozart sonatina: using the KS algorithm. (com-
pare to fig. 6).

A slightly stronger emphasis on the dominant key can also
be seen in figure 11 as compared to figure 6. The large G ma-
jor structure proceeds higher up in the diagram than it does in
figure 6 and the fragmented G region around the 2/3 point in
figure 11 is much less pronounced in figure 6. Thus, it can be
inferred that the KS algorithm will be more prone to identi-
fying the dominant key of the correct key than the algorithm
used to generate figure 6.

Figure 11 can also be used to illustrate the difficulty of
extracting a good sequence of modulations in a composition
as mentioned in the Motivation section. The Mozart sonatina
is a very simple and clear tonal piece. I say that the movement
contains a sequence of 5 key regions: (C, G, D, F, C), with the
following segmentation boundaries:

key area bars length
C major 1 – 15 15 bars
G major 16 – 28 13 bars
D minor 29 – 32 4 bars
F major 33 – 38 6 bars
C major 39 – 63 25 bars

The D minor section is very brief and could be considered
part of the F major region. D minor serves as a transition be-
tween the keys of G and F by switch roles from a dominant
key to a relative minor key. Now notice that this sequence of
keys is not present on any horizontal line in figure 11. There-
fore, no fixed analysis window size in the KS algorithm will
give the correct sequence according to my human-based har-
monic analysis. Figure 6 fairs a little better with a wide region
in the middle of the diagram containing the sequence (C, G,
A, F, C), and the algorithm admits that it is having problems
identifying a key in the D minor region (see figure 8).

Further improvements to key-finding algorithms can be
accomplished by using the visualization techniques presented
in this paper as an evaluation tool. With key diagrams, the

strengths and weakness in a particular algorithm are much
easier to detect, since a large number of analyses are needed
to make a single picture. In particular, improvements to the
handling of modulation areas should yield better boundaries
between key-regions.

3.2 Music Analysis

The key diagrams presented in this paper have numerous
potential applications in harmonic analysis. In music theory
training, the visualization maps of the harmony can assist stu-
dents in understanding musical structures which are difficult
to explain. For example, the diagrams could help in under-
standing the difference between a modulation and a toniciza-
tion. Also, the plots can be an objective tool to explain the
conflicting interpretations of music theorists.

Another type of music analysis application may be the
identification of harmonic form, and style. Highly tonal mu-
sic such as the Mozart sonatina, used as an example in this pa-
per, form clearly defined high-level key structures in the dia-
grams. Baroque and Romantic era music generally contain
more elaborate key relations and therefore have a tendency
to contain more detail in the higher levels of the diagrams as
compared to Classical music.

The diagrams for J.S. Bach’s prelude and fugue in C mi-
nor from WTC 1, displays an interesting contrast. The pre-
lude’s diagram contains smooth key center boundaries at the
higher levels, while the fugue’s diagram contains key centers
with much more fragmented boundaries. This is to be ex-
pected since Bach preludes are usually consist of one melody
and accompaniment, while fugues are more focused on the
linear aspects of melody rather than on harmony.

Figure 12: Anton Webern – Op. 27, No. 1. Twelve-tone
music (compare to fig. 5 and fig. 13.).

As a contrast to tonal music, figures 12 and 13 display
samples of non-tonal music. The Webern piano variation
shown in figure 12 uses the modern technique found in twelve-
tone music where all twelve pitch classes are used in sequence



before being repeated. The twelve-tone technique is there-
fore used intentionally to destroy any sense of key through-
out the composition. Notice that the key center boundaries
in figure 12 are fragmented. The diagonal evolution of the
key areas towards the top of the diagram is also unlike the
vertical structures created in the Mozart sonatina. In particu-
lar, the C key region in the middle of the diagram has an in-
verted foundation. In other words, it is difficult to define the
key of C major without playing C major chords. Figure 12
only shows the best keys, when plotting a type 3 diagram of
the twelve-tone piece, the keys areas become even less pro-
nounced than in this type 2 plot.

Figure 13 shows a piece of music from the other side of
music history. This figure displays a type 2 key plot for a Me-
dieval motet from the 13th century—several hundred years
before the development of functional harmony in the 17th
century. Even though the piece uses a diatonic pitch set, it is
remarkably similar in character to the Webern example. Key
boundaries are fragmented and follow diagonal paths more
than vertical paths. Also similar to the Webern example, the
top level key centers switch between C and D, which are not
closely related keys.

Figure 13: 13th century motet attr. to Petrus de Cruce (com-
pare to fig. 5 and fig. 12.

As a final historical contrast, consider figure 14 which dia-
grams the key profiles in a prelude written by the late Roman-
tic composer Alexander Scriabin. The key boundaries at the
higher levels are fragmented, but the primary key is clearly
E minor. The top level key centers in this diagram are closely
related (tonic and dominant). The lower level key centers of
A and D are arranged in a vertical manner similar to the key
regions in the Mozart sonatina.

4 Summary

It is more interesting to know the interaction between key
areas in a piece of music than just knowing the key-label
for an entire composition or selection of music. With the

Figure 14: Alexander Scriabin – Prelude in E minor, Op.11,
No.4.

harmonic maps generated from these visualizations of key-
finding algorithms, the interactions and relations between keys
become easier to examine.

The plots presented in this paper generate fascinating vi-
sualizations of harmony. Aside from looking nice, they can
be used to compare the behavior of different key-finding al-
gorithms. Also, they are a good starting point from which to
develop more robust algorithms that can accurately detect key
modulations in a musical sense rather than in a computational
sense.

Many variations on the basic harmonic visualizations pre-
sented in this paper are yet to be explored. For example, all of
the plots presented in this paper use analysis windows which
weight musical pitches in the analysis window equally. Vary-
ing the importance of a pitch inside the analysis windows by
using a triangular or exponential window might yield inter-
esting results.
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