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ABSTRACT

Traditionally, rhythmic similarity measures are compared
according to how well rhythms may be recognized with
them, how efficiently they can be retrieved from a data
base, or how well they model human perception and cog-
nition. In contrast, here similarity measures are compared
on the basis of how much insight they provide about the
structural inter-relationships that exist within families of
rhythms, when phylogenetic trees and graphs are com-
puted from the distance matrices determined by these sim-
ilarity measures. Phylogenetic analyses yield insight into
the evolution of rhythms and may uncover interesting an-
cestral rhythms.

1. INTRODUCTION

Measuring the similarity between rhythms is a fundamen-
tal problem in computational music theory, with many ap-
plications such as music information retrieval and copy-
right infringement resolution. It has been argued that the
type of similarity measure used should depend on the in-
tended application [8]. We describe the results of a pilot
study carried out to compare a variety of rhythm similar-
ity measures with respect to how useful they are for the
phylogenetic analysis of families of rhythms. It should be
emphasized that the focus of this paper is not the measure-
ment of psychological similarity (based on perception).
It is also assumed that the data is obtained from musi-
cal scores rather than audio, and thus tempo problems are
ignored. Two families of rhythms were selected for this
study, the fundamental rhythm timelines in 4/4 and 12/8
time, used in traditional West-African and Afro-American
music [12], [14]. These timelines are also called bell-
patterns or clave patterns, of which the most famous on
the world music scene is the clave Son. Although the data
used in this study consist of only two small families of
rhythms, these were chosen for two reasons: (1) they are
important and well known in world music, and (2) they are
simple and well understood from the musicological point
of view, thus simplifying the validation process of their
phylogenetic analyses.
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Figure 1. Eight common ways of representing the clave
Son rhythm.

The clave Son is usually notated using standard music
notation which affords many ways of expressing a rhythm.
Four such examples are given in the top four lines of Fig-
ure 1. Western music notation is not ideally suited to rep-
resent African music [1]. The remaining lines show ways
of representing rhythms that avoid Western notation.

There exists a wide variety of methods for measuring
the similarity of two rhythms represented by strings of
symbols [13]. Traditionally similarity between two pat-
terns is measured by a simple template matching opera-
tion. More recently similarity has been measured with
more powerful and complex functions such as the earth
mover’s distance [2].

In this section we describe the five, easy to compute,
popular and representative measures of rhythm similar-
ity (or dissimilarity) that were compared in this study. It
should be noted that although the rhythms considered here
have, within each family, the same number of onsets, the
Hamming, swap, and chronotonic distance measures do
not assume this restriction and work just as well for com-
paring rhythms containing unequal numbers of onsets.
The Hamming distance: The Hamming distance is the
number of places in the binary n-bit string representation
of the rhythm where bits do not match. It is easily com-
puted in O(n) time.
The Euclidean interval vector distance: Some rhythm
detection algorithms and systems for machine recognition
of music patterns [3] use inter-onset intervals as the basic



features for measuring similarity. These are the intervals
of time between consecutive note onsets in a rhythm. The
dissimilarity between two rhythms, each consisting of n
time intervals, may be computed in O(n) time using the
Euclidean distance between the two interval vectors.
The interval-ratio distance: Coyle and Shmulevich [3]
represent a music pattern by what they call a difference-
of-rhythm vector. If T = (t1, t2, ..., tn) is a vector of
inter-onset time intervals then they define the difference-
of-rhythm vector as X = (x1, x2, ..., xn−1), where xi =
ti+1/ti. They propose a distance measure based on this
vector which may also be easily computed in O(n) time.
This measure is called here the interval-ratio distance.
The swap distance: A generalization of the Hamming
distance is the edit distance which allows for insertions
and deletions of notes [9]. Using dynamic programming
the edit distance may be computed in O(n2) time.

The problem of comparing two binary strings of the
same length with the same number of one’s suggests an
extremely simple edit operation called a swap. A swap is
an interchange of a one and a zero that are adjacent to each
other. The swap distance is the minimum number of swaps
required to convert one rhythm to another. Note that this
distance measure extends naturally to handle rhythms with
a different number of onsets. Assume that rhythm A has
more onsets than rhythm B. Then the swap distance may
be defined as the minimum number of swaps required to
take all onsets of A to the onsets of B, with the restriction
that each onset of B must receive at least one onset of A,
as was done in [4] for the analysis of Flamenco rhythms.

The swap distance may be computed by actually per-
forming the swaps, but this is inefficient because a quadratic
number of swaps may be required in the worst case. If we
compare the interval distances instead, the swap distance
may be computed in O(n) time when the rhythms have
the same number of onsets, and in some other situations
as well, resulting in a large gain over using linear or dy-
namic programming.
The chronotonic distance: In 1987 Kjell Gustafson, at
the Phonetics Laboratory of the University of Oxford, pro-
posed an original method to represent a rhythm as a two-
dimensional graph [5]. His idea is best explained with an
example. Consider first the clave Son pattern shown on
line five of Figure 1. Although this representation is real-
istic in terms of the time at which beats occur, the rel-
ative durations of the intervals are not easily observed.
In a histogram approach to rhythm visualization the in-
tervals are plotted along the y-axis [5], resulting in the
adjacent-interval-spectrum of the rhythm in which the rel-
ative lengths of the intervals are clearly visible but the
temporal information along the x-axis is lost. To obtain
a graphical representation that posesses the advantages of
both of these methods, Gustafson simply combines them.
The result of this union is illustrated with the clave Son
in Figure 2. Each temporal element (interval) is now a
box and both the x and y axes represent the length of
time of the interval. Gustafson refers to such a display as
TEDAS (Temporal Elements Displayed As Squares). This
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Figure 2. The chronotonic (TEDAS) representation of the
clave Son.

idea was rediscovered by Hofmann-Engl [6]. We will re-
fer to this as the chronotonic representation of a rhythm.

Viewing the chronotonic representation as a piece-wise
linear function opens the door to a large family of possi-
ble distance functions with a long history in the fields of
statistics and pattern recognition [10]. Given two proba-
bility density functions f1(x) and f2(x), there are many
measures of the distance (or separation) between them.
One of the most well known is the Kolmogorov variational
distance [11] given by:

K =

∫
|f1(x) − f2(x)|dx. (1)

Here the measure K is used to compare rhythms using
the chronotonic representation proposed by Gustafson [5]
(even though the functions are not probability density func-
tions). In this discrete setting it is clear that K may be
computed easily in O(n) time.

2. COMPARING RHYTHMIC SIMILARITY
MEASURES

The measures discussed in the preceeding section were
compared using two families of rhythms: the fundamen-
tal binary and ternary timelines used in West-African and
Afro-American traditional music. The first family consists
of the six five-beat clave-bell patterns in 4/4 time [12], and
the second is comprised of the ten seven-beat bell patterns
in 12/8 time [14]. These two families are depicted in the
chronotonic notation of Gustafson in Figures 3 and 4, re-
spectively. One of the main goals of this study is to ob-
tain insight into the evolution of rhythms as well as un-
cover interesting “ancestral” rhythms. Hence, rather than
use any of the myriad traditional cluster analysis methods,
here phylogenetic analysis tools from bioinformatics are
used. After all, at a purely mathematical level, rhythms
and DNA molecules are both sequences of symbols.

Several techniques exist for generating phylogenetic
trees from distance matrices [7]. Some of these methods
have the desirable property that they produce graphs that
are not trees, when the underlying structure is inherently
not tree-like. One notable example is SplitsTree [7]. Like
the more traditional phylogenetic trees, SplitsTree com-
putes a plane graph embedding with the property that the
distance in the drawing between any two nodes reflects the
true distance between the corresponding rhythms in the
distance matrix. However, if the tree structure does not
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Figure 3. The chronotonic representation of the 4/4 time
clave patterns.

match the data perfectly then new nodes in the graph may
be introduced with the goal of obtaining a better fit. Such
nodes may suggest implied “ancestral” rhythms from which
their “offspring” may be derived. In addition, edges may
be split to form parallelograms, such as in Figure 5. The
relative sizes of these parallelograms are proportional to
an isolation index that indicates how significant the clus-
tering relationships inherent in the distance matrix are.
SplitsTree also computes the splitability index, a measure
of the goodness-of-fit of the entire splits graph. This fit
is obtained by dividing the sum of all the approximate
distances in the splits graph by the sum of all the origi-
nal distances in the distance matrix [7]. For these reasons
SplitsTree was the method of choice in this study.

3. RESULTS

Space limitations do not permit a discussion of all the
results. Suffice it to say that the quantitative phyloge-
netic analyses support the tenets previously established
for these rhythms via traditional qualitative musicological
methods. Here only some of the results obtained with the
best measure, the chronotonic distance, are summarised.

For the 4/4 time rhythms the splits graph shown in Fig-
ure 5 is a tree-like graph with a perfect fit of 100% This
distance measure is the only one that exhibits a strong
clustering in this family of rhythms. In particular, the long
parallelogram clearly separates Bossa-Nova and Gahu from
the rest. An examination of their chronotonic functions of
time (see Figure 3) yields a clearly distinguishable dis-
criminating feature. The Bossa-Nova and Gahu functions
have only one local maximum, whereas each of the four
other rhythms has two local maxima.

For the 12/8 time rhythms the splits graph shown in
Figure 6 exhibits a rich structure with a perfect fit of 100%.
There are two highly clustered groups. The first group
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Figure 4. The chronotonic representation of the 12/8 time
bell patterns.
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Figure 5. The 4/4 time rhythms.

consists of Soli, Asaadua, Tambú, Yoruba, and Bembé.
The second group is comprised of Tonada, Ashanti, Bembé-
2, and Sorsonet. Furthermore, Bemba lies half-way be-
tween the two groups.

The splits graph has nine potential ancestral nodes. One
of these is distinguished from the rest, not only because
of its high degree, but because it is located in the cen-
ter of the entire collection, and is at a distance of two
from all ten rhythms. For this reason it is labelled the 2-
center of the set. A reconstruction of this ancestral rhythm
yields the pattern [x . x . x . x . x . x .], which is a steady,
isochronous “heart-beat.”

Several desirable criteria may be used for comparing
phylogenetic trees of families of rhythms. Such criteria
include (1) simplicity, (2) goodness of fit, (3) indication
of clustering, and (4) generation of interesting “ancestral”
rhythms.
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Figure 6. The 12/8 time rhythms.

Simplicity: The simplest splits graphs were obtained with
the swap distance.
Goodness of fit: The only distance measures that yielded
a 100% fit for both binary and ternary rhythms were the
swap and chronotonic distances. The Hamming distance
also produced a 100% fit for the binary rhythms.
Clustering: The most impressive clustering was obtained
with the chronotonic distance. For the binary rhythms,
Gahu and Bossa-Nova are clearly differentiated from the
rest. For the ternary rhythms the splits graph yields two
well separated clusters.
Ancestral rhythm generation: The most noteworthy “an-
cestral” rhythms were produced with the chronotonic dis-
tance for ternary rhythms and with the Hamming distance
for the binary rhythms.

In conclusion, a comparison of the significance of the
role played by the five distance measures according to
each of the four criteria outlined in the preceeding, sug-
gests that the best rhythmic dissimilarity measure is the
chronotonic distance, followed by the swap distance in
close second place. Generalizing these conclusions to other
larger families of rhythms is premature. However, these
results constitute a positive first step, and encourages the
continuation of this line of research in greater depth.
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