
A POLYPHONIC MUSIC RETRIEVAL SYSTEM USING N -GRAMS

Shyamala Doraisamy
Fac. of Comp. Sc. and IT
University Putra Malaysia

Stefan Rüger
Department of Computing
Imperial College London

ABSTRACT

This paper describes the development of a polyphonic mu-
sic retrieval system with the n-gram approach. Musical
n-grams are constructed from polyphonic musical perfor-
mances in MIDI using the pitch and rhythm dimensions of
music. These are encoded using text characters enabling
the musical words generated to be indexed with existing
text search engines. The Lemur Toolkit was adapted for
the development of a demonstrator system on a collection
of around 10,000 polyphonic MIDI performances. The in-
dexing, search and retrieval with musical n-grams and this
toolkit have been extensively evaluated through a series
of experimental work over the past three years, published
elsewhere. We discuss how the system works internally
and describe our proposal for enhancements to Lemur to-
wards the indexing of ‘overlaying’ as opposed to index-
ing a ‘bag of terms’. This includes enhancements to the
parser for a ‘polyphonic musical word indexer’ to incorpo-
rate within document position information when indexing
adjacent and concurrent musical words. For retrieval of
these ‘overlaying’ musical words, a new proximity-based
operator and a ranking function is proposed.

1. INTRODUCTION

N -grams have been widely used in text retrieval, where a
sequence of symbols is divided into overlapping constant-
length subsequences. A character string formed from n
adjacent characters within a given text is called an n-gram.
N -gramming has recently been adopted as an approach
for indexing sound-related data. An experimental system
by [4] which used a database of folksongs, allowed index-
ing of the entire musical work. Using this approach for
full music indexing of monophonic data, each folksong
of the database was converted into a sequence of pitch
intervals ignoring individual durations. Using a gliding
window, this sequence was fragmented into overlapping
length-n subsections. These n-grams were then encoded
as ‘text’ words or ‘musical words’, a term coined by [4]
that we have continued to adopt. These are basically a
string of characters with no semantic content. As a con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2004 Universitat Pompeu Fabra.

sequence, each folksong could be represented as a ‘text
document’, and regular text search engines can be used.

Several studies have investigated the use of n-grams
and information retrieval (IR) approaches for music in-
formation retrieval (MIR) [4, 9, 7]. However, the con-
struction of n-grams has been confined to monophonic
sequences. We introduced a method to obtain n-grams
from polyphonic music using the pitch and rhythm dimen-
sions of music, and through a series of experimentation,
the robustness of musical n-grams with polyphonic music
retrieval was shown [2].

The IR process can be briefly described based on a gen-
eral IR model. Information items in a collection are pre-
processed and indexed. During information retrieval, a
user’s query is processed and formulated to the format re-
quirements of the indexed collection. Information items
that are most similar to the query would be retrieved and
presented to the user based on a similarity computation.
Developments on this basic model has resulted in rather
diverse IR models, but with the common general empha-
sis of retrieving information relevant to a request, rather
than direct specification of a document. Modern IR sys-
tems include sophisticated indexing, searching, retrieving
technologies, similarity computation algorithms and user-
interfaces. We utilise these for our MIR system.

This paper is structured as follows: The approach to
constructing n-grams from polyphonic music data using
the pitch and rhythm dimension of music is presented in
Section 2. Section 3 presents our polyphonic music re-
trieval system design. The user interface of our system
demonstrator is shown in Section 4.

2. MUSICAL N -GRAMS

2.1. Pattern extraction

With polyphonic music data, the approach described in
Section 1 for generating n-grams from monophonic se-
quences would not be applicable, since more than one
note may be sounded at one point in time. The approach
proposed by us for n-gram construction from polyphonic
data is discussed briefly in this section. Polyphonic mu-
sic pieces are encoded as an ordered pair of onset time
(in milliseconds) and pitch (in MIDI semitone numbers)
and these are sorted based on the onset times. There may
possibly be a few different pitches corresponding to one
particular onset time with polyphonic music data. Pitches
with the same or similar onset time together as musical

0 71






window 1
150 69







window 2
300 68















window 3
450 69























600 57 window 4
72

900 64
60

Figure 1. Excerpt from Mozart’s ‘Alla Turca’ and the first
few events with onset times and pitches

events are grouped together. Using the gliding window ap-
proach as illustrated in Figure 1, this sequence of events is
divided into overlapping subsequences of n different adja-
cent events, each characterised by a unique onset time. For
each window, we extract all possible monophonic pitch
sequences and construct the corresponding musical words.
These words would be used for indexing, searching and
retrieving from a polyphonic music collection.

Interval representation of pitches, i.e., the difference of
adjacent pitch values, are used rather than the pitch values
themselves, owing to their transposition-invariance. For
a sequence of n pitches, we define a sequence of n − 1
intervals by

Intervali = Pitchi+1 − Pitchi. (1)

Figure 1 illustrates the pattern extraction mechanism
for polyphonic music: The performance data of the first
few notes of a performance of Mozart’s ‘Alla Turca’ was
extracted from a MIDI file and converted into a text for-
mat, as shown at the bottom of Figure 1. The left column
contains the onset times sorted in ascending order, and
the corresponding notes (MIDI semitone numbers) are in
the right column. When using a window size of 3 onset
times, we get one interval sequence for the first window
[−2 −1], one for the second window [−1 1] and two for
the third window, [1 −12] and [1 3]. The polyphonic data
in the fourth window gives rise to 4 monophonic pitch se-
quences within this window.

Ratioi =
Onseti+2 − Onseti+1

Onseti+1 − Onseti

. (2)

Although MIDI files encode the duration of notes, we
do not take the actual or perceived duration of notes into
consideration, as this is nearly impossible to determine
from actual performances or raw audio sources. By con-
trast, onset times can be identified more readily with sig-
nal processing techniques.

For a sequence of n onset times we obtain n − 2 ra-
tios using Eqn 2 and n − 1 interval values using Eqn 1.

An n-gram representation which incorporates both pitch
and rhythm information using intervals (I) and ratios (R)
would be constructed in the form of

[I1 R1 . . . In−2 Rn−2 In−1]. (3)

Using the example of Figure 1, the combined interval
and ratio sequences from the first 3 windows of length 3
are [−2 1 −1], [−1 1 1], [1 1 −12] and [1 1 3]. Note that
the first and last number of each tuple are intervals while
the middle number is a ratio.

2.2. Pattern encoding

In order to be able to use text search engines, the n-gram
patterns have to be encoded with text characters. One
challenge that arises is to find an encoding mechanism
that reflects the patterns we find in musical data. With
large numbers of possible interval values and ratios to be
encoded, and a limited number of possible text representa-
tions, classes of intervals and ratios that clearly represent a
particular range of intervals and ratios without ambiguity
had to be identified. For this, the frequency distribution
for the directions and distances of pitch intervals and ra-
tios of onset time differences that occur within the data set
were obtained. The frequency distribution of all occurring
intervals (in units of semitones) of 3096 polyphonic MIDI
files was analysed. According to the distribution, the vast
bulk of pitch changes occurs within one octave (i.e., with
semitone differences between −12 and +12), and a good
encoding should be more sensitive in this area than out-
side it. We chose the code to be the integral part of a
differentiable continuously changing function, the deriva-
tive of which closely matches the empirical distribution of
intervals.

C(I) = int (X tanh(I/Y)) , (4)

where X and Y are constants and C(I) is the code as-
signed to the interval I . The function int returns the inte-
ger portion of its argument. X has the effect of limiting
the number of codes, and with 26 letters (a-z) adopted for
the study, it is accordingly set to 27 in our experiments.
Y is set to 24 for this achieves a 1:1 mapping of semi-
tone differences in the range {−13,−12, . . . , 13}. In ac-
cordance with the empirical frequency distribution of in-
tervals in this data-set, less frequent semitone differences
(which are bigger in size) are squashed and have to share
codes. The codes obtained are then mapped to the ASCII
character values for letters. In encoding the interval di-
rection, positive intervals are encoded as uppercase letters
A−Z and negative differences are encoded with lowercase
letters a−z, the code for no difference being the numeric
character 0.

The frequency of the logarithm of all occurring ratios
of the data collection in the sense of Eqn 2 was anal-
ysed. Peaks clearly discriminated ratios that are frequent.
Mid-points between these peak ratios were then used as
the bin boundaries which provide appropriate quantisa-
tion ranges. Ratio 1 has the highest peak, as expected,

and other peaks occur in a symmetrical fashion where, for
every peak ratio r, there is a symmetrical peak value of
1/r. From our data analysis, the peaks identified as ratios
greater than 1 are 6/5, 5/4, 4/3, 3/2, 5/3, 2, 5/2, 3, 4 and 5.
The ratio 1 is encoded as Z. The bins for ratios above 1, as
listed above, are encoded with uppercase letters A−I and
any ratio above 4.5 is encoded as Y. The corresponding
bins for ratios smaller than 1 as listed above are encoded
with lowercase letters a−i and y, respectively.

Musical words obtained from encoding the n-grams
generated from polyphonic music pieces with text letters
are used in the construction of index files. Queries, either
monophonic or polyphonic are processed similarly. The
query n-grams are used as search words in a text search
engine.

2.3. N -gramming strategies

Several problems had been identified in the use of n-grams
with polyphonic music retrieval. These problems and so-
lutions were tested. We carried out evaluations with sev-
eral possible indexing mechanisms [2, 3]. In this subsec-
tion we summarise our conclusions from the evaluations
that informed in our system design.

2.3.1. Path restrictions

When the window size n is large or when too many notes
could be sounded simultaneously, the number of all mono-
phonic combinations within a window becomes large. Con-
sider, for example, the case of n = 5, with ten differ-
ent notes played at each of the 5 onset times. As a re-
sult there would be 105 = 100, 000 different monophonic
paths through this window: this appears to be an imprac-
tical way of indexing a tiny bit of music! In this case, we
suggest restricting the possible combinations to variations
of upper and lower envelopes of the window, i.e., we only
allow monophonic sequences which run through the high-
est two notes per event (variation of the upper envelope)
or which run through the lowest two notes per event (vari-
ation of the lower envelope). In the above example there
would only be 2 · 25 = 64 different monophonic paths
through this highly polyphonic passage of music.

2.3.2. Position Information

Proximity-based retrieval has been widely used with text.
In general, proximity information can be quite effective at
improving precision of searches [1]. Adopting its use with
music data has been very limited — a preliminary study
performed by [7] using monophonic musical sequences.
Apart from just storing the document id, the location for
the occurrence of a term or within document position(s)
can be added to the index data. With exact positions where
a word appears in a text, single-word queries can be ex-
tended as a phrase. A more relaxed version of the phrase
query is the proximity query. In this case, a sequence of
single words or phrases is given, together with a maximum
allowed distance between them. The words and phrases

Poly/Mono-phonic

Music Queries
Poly/Mono-phonic

Music Documents

Formulated “Musical

Text” Query
“Musical Words”

Indexed Collection

Document Pre-processing and IndexingQuery processing and formulation

Similarity

computation

Ranked List of

Similar Music

Documents

Music-friendly inputs

Music-friendly outputs

Figure 2. Polyphonic Music Retrieval System Overview

may or may not be required to appear in the same order
as the query. The first word’s location is identified and if
all terms are found within a particular distance, the term
frequency is incremented for the given phrase query [1].

In considering within document position and adjacency
of terms for polyphonic music, not only the ‘listening or-
der’/‘playing order’ based on the timeline that has to con-
sidered but also the concurrency of this ‘order’. The only
sequentially that has been preserved with the n-gram ap-
proach for musical words generation when indexing has
been n contiguous notes [7]. Polyphonic music would
require a new approach towards indexing position infor-
mation using ‘overlaying’ positions of polyphonic musi-
cal words. This would take into consideration the time-
dependent aspect of polyphonic musical words compared
to indexing a ‘bag of terms’. In using the n-gram ap-
proach towards indexing polyphonic music, apart from the
adjacent musical words generated based on a time line,
words may be generated concurrently at a particular point
in time. Preliminary investigation performed [3] empha-
sizes the need for a ‘polyphonic musical word position
indexer’.

3. POLYPHONIC MUSIC RETRIEVAL SYSTEM

The scope of our MIR system is to retrieve all similar
pieces given either a monophonic or polyphonic musical
query excerpt. For music similarity assumptions, evalua-
tion of the approaches have been based on the relevance
assumption used by [9]. The polyphonic music retrieval
system design is shown in Figure 2 and the following sub-
sections describe the processes shown.

3.1. Document Preprocessing and Indexing

The document collection used contained almost 10,000
polyphonic MIDI performances. These were mostly clas-
sical music performances which had been obtained from
the Internet [http://www.classicalarchives.com]. Files that
converted to text formats with warning messages on the
validity of the MIDI file such ‘no matching offset’ for a
particular onset, by the midi-to-text conversion utility [6],
were not considered for the test collection.

Index Pos. Pitch Rhythm n Y #R.Bins
PPR4 yes yes yes 4 24 21
PPR4ENV yes yes yes 4 24 21
PR3 no yes yes 3 24 21
PR4 no yes yes 4 24 21
PR4ENV no yes yes 4 24 21
PR5ENV no yes yes 5 24 21

Table 1. Musical word format and index file variants

Documents are preprocessed using our n-gram approach
with several variants of indexes are developed based on
the strategies described in Subsection 2.3. Queries are
usually subjected to the same kind of processing. Index
mechanisms that combine various elements were evalu-
ated and following are those recommended from our in-
vestigation:

PR3, PR4: The pitch and rhythm dimensions are used for
the n-gram construction, as described in Subsection
2.1. n = 3 or n = 4 were values of n adopted. For
interval encoding, the value of Y in Eqn 4 is set to
24. For the ratio encoding, all 21 bin ranges that had
been identified as significant, as listed in Subsection
2.2, were used.

ENV as suffix: The generation of n-grams is restricted to
the variations of the upper and lower envelopes of
the music, as discussed in Subsection 2.3.1.

PPR4: Incorporation of position information to PR4 as
discussed in Section 2.3.4.

Table 1 shows a summary of the used word and index
file formats listed in alphabetical order (with Pos. indi-
cating if position information is included with the index
data).

3.2. Query Processing and Formulation

Both monophonic and polyphonic queries can be made to
the indexed polyphonic collection. The musical words ob-
tained from the query document can be queried as a bag
of terms against the collection indexed in the same way.
What is currently being investigated are queries formu-
lated as structured queries to be queried against the collec-
tion indexed with the includion of position information.

3.2.1. Bag of terms

Queries are processed in the same approach to the indexed
collection. The musical word format variants are listed in
Table 1. Adjacancy and concurrency information of the
musical words are not considered.

3.2.2. Internal Structured Query Format

The use of the various proximity-based and structured query
operators available within [5] are currently being investi-
gated for the inclusion to the system. Query languages

allow a user to combine the specification of strings (or
patterns) with the specification of structural components
of the document. Apart from the classic IR models, IR
models that combine information on text content with in-
formation on the document structure are called structured
text retrieval models 1 [1]. Following are operators within
Lemur that were tested:

Sum Operator: #sum (T1 . . . Tn) The terms or nodes con-
tained in the sum operator are treated as having equal
influence on the final result. The belief values pro-
vided by the arguments of the sum are averaged to
produce the belief value of the #sum node.

Ordered Distance Operator: #odN (T1 . . . Tn) The terms within
an ODN operator must be found in any order within
a window of N words of each other in the text in
order to contribute to the document’s belief value.

A few initial tests using the known item search with
the ODN operator showed, as expected, a poor perfor-
mance. Retrieval using more complex query formulations
were then looked into [3]. A monophonic theme extracted
from Figure 1 was encoded as:
bZaZA aZAZC AZCIB CIBib BibZa bZaZA aZAZD AZ-
DIA DIAia AiaZa aZaZA aZAZG AZGZb GzbZa bZaZA
aZAZB AZBZb BzbZa bZaZA aZAZC
The query was then reformulated as (This reformulation
would be done automatically by the system internally and
would be transparent to the user):

#SUM(#ODN3(bZaZA aZAZC)
#ODN3(AZCIB CIBib)
...
#ODN3(bZaZA aZAZC))

Based on the analysis of our retrieval results [3], a more
specific operator for music retrieval is required and the in-
troduction of MODN (Musical Ordered Distance Opera-
tor) is discussed in the following subsection.

3.3. Similarity Computation

The main aim of the system is to retrieve all similar pieces,
given a monophonic or polyphonic musical excerpt as a
query and using the relevance assumption adopted by [9].
Currently the system retrieves based on the vector-space
IR model. Ongoing work in adapting the structured re-
trieval model for proximity-based retrieval is discussed in
the second part of this subsection.

3.3.1. Vector-space model

To index, search and retrieve, the Lemur Toolkit was se-
lected as the research tool as it supported a number of IR

1 In using the Boolean model, a classic IR model, for a query ’white
house’ to appear near the term ‘president’, it would be expressed as
[‘white house’ and ‘president’]. Classic IR models include the Boolean,
vector-space and probabilistic models [1]. A richer expression such as
‘same-page(near(‘white house’,’president’)))’ would require a structured
query language.

Polyphonic Midi File
Enhanced Polyphonic

Text Document

Generator

Musical text document

with within word

positions

1 bZaZA 2 aZAZl 2 aZAZC 3 AylFG 3 AZCFh 3 AylFC

3 AZCFl 4 lFGZJ 4 CFhZJ 4 lFCZN 4 CFlZN 4 lFGZ0

4 CFhZ0 4 lFCZD 4 CFlZD 4 lFGZd 4 CfhZd 4 lFCZ0

4 CFlZ0 5 GZJfb 5 hZJfb 5 CZNfb 5 lZNfb 5 GZ0fH

5 hZ0fH 5 CZDfH 5 lZDfH 5 GZdfL 5 hZdfL 5 CZ0fL

5 lZ0fL

Figure 3. Musical text document with within document
word positions

models which we investigated for MIR. Models supported
include the use of language models (based on a probabilis-
tic approach) and the vector-space model. Similar to the
findings from the study by [7], the language modelling ap-
proach did not perform as well with musical n-grams and
teh vector-space model was adopted. Details of adapting
this model in Lemur are discussed in detail in [10].

3.3.2. Structured retrieval model and polyphonic position
indexing

For proximity-based retrieval, the structured query lan-
guage provided by Lemur was investigated and in this sec-
tion we discuss the enhancements being tested for poly-
phonic music retrieval.

Using the first five onsets of the music excerpt in Fig-
ure 1, the document generated from our polyphonic text
document generator would be similar as the bag of terms
shown in Subsection 3.2.2. The polyphonic text document
generator is the tool we developed (modules added to util-
ities by GN MIDI Solutions [6]) for the conversion of a
polyphonic MIDI file into a polyphonic musical text doc-
ument. This was enhanced to output ‘overlaying’ posi-
tions. The parser in [5] had to be modified to parse these
new position information format. ’Overlaying’ positions
as shown in Figure 3 would need to be recorded by the
index.

The existing proximity-based operator ODN retrieves
only documents that contain all query terms in the simi-
lar order within a given proximity distance are retrieved.
Intercepting onsets from a polyphonic document would
generate n-grams that are dissimilar to its corresponding
monophonic query, resulting in non-retrieval of relevant
documents. Erroneos queries would also generate dissim-
ilar n-grams from the relevant document. A ‘musical or-
dered distance operator’ (MODN) should enable this dif-
ference between n-grams generated from the query and
the relevant polyphonic document to be reflected by a sim-
ilarity measure [3], i.e., retrieval that partially satisfies
query conditions would be needed. Ranked retrieval should
be based on the number of query terms found within a
given proximity distance and not the condition that all
terms must be found within a given proximity distance.
The requirement of MODN therefore would be to retrieve

<DOC q1>

MODN

3

LPAREN

1 p

2 q

3 r

RPAREN

<DOC q2>

MODN

3

LPAREN

1 p

2 q

2 r

3 s

RPAREN

Figure 4. Query Documents

documents based on a rank whereby documents that match
the query with the The Highest number of query n-grams
within a given proximity distance would be retrieved with
the highest rank, i.e., rank 1.

We are currently investigating a simple scoring func-
tion based on the notion of ‘fuzzy match points’ for MODN.
Therefore in formulating a scoring function for MODN,
we start at the very beginning and look at the notion of
match points for term or phrase frequencies instead [1].
The term match point defined by [1] refers to the posi-
tion in the text of a sequence of words which matches (or
satisfies) the user query. If a string appears in three po-
sitions in the text of a document dj , we say that the doc-
ument dj contains three match points. With MODN, we
continue to look at match points but the match points for
polyphonic musical documents would be the position in
the text document that matches the first term available of
the query sequence. Apart from assigning a match point
only based on the first term of the query sequence, any of
the following terms in the query sequence can assume the
first position if any of the prior terms do not exist in that
particular sequence. For the score calculation, 1 point is
given as a score for the first term from the query sequence
that is found in a text document and 1 point for each of the
following term that is found within the given proximity.

This score calculation is shown using the following ex-
ample. Two sample queries, q1 (a monophonic query) and
q2 (a polyphonic query) are given in Figure 4. The query
documents are shown in the format required by Lemur’s
parser. For an example of four relevant documents, D1: 1
p 2 q 2 r 3 r 4 s 4 t, D2: 1 p 2 q 3 x 4 y, D3: 1 p 2 q 3 p 4
q 5 r and D4: 1 p 2 q 3 a 4 b 5 c 6 d 7 r 8 p 9 q 10 r, the
scores for each of these documents for each of the queries
would be as follows:

The relevance scores of the documents for q1 are: D1
= 5 (from sequences (p q r) and (p r)), D2 = 2 (from se-
quence (p q)), D3 = 6 (from two sequences (p q r)), and
D4 = 5 (from sequences (p q) and (p q r)).

The relevance scores of the documents for q2 are based
on two monophonic sequences – (p q s) and (p r s): D1 =
9 (from sequences (p q s), (p r s) and (p r s)) , D2 = 2
(sequence (p,q)), D3 = 4 (2 sequences (p q)), and D4 = 6
(sequences (p q), (p q) and (p r)).

Figure 5. User interface

Figure 6. QBH System Interface

4. SYSTEM DEMONSTRATOR

The screen shots of our early polyphonic music retrieval
system demonstrator is shown in Figure 5. Apart from se-
lecting a poly/monophonic MIDI file from the dialog box
provided, a query input can also be made via a ‘graph-
ical keyboard’ enabling monophonic performance inputs
only. MIDI files generated will be processed by the musi-
cal document generator discussed Subsection 3.3.2. gen-
erating query terms in the same format as the indexed doc-
uments as shown in Table 1. The screen shot shows re-
trieval results as a text file with a ranked list of documents.
For the retrieval shown, the musical text documents were
indexed with the PR4ENV format with Lemur version 1.9.
The system is currently being tested with Lemur Version
2.2 being enhanced for the inclusion of the new musical
words parser, MODN and its scoring module. Future work
includes evaluation of this.

This development work is part of the Multimedia Knowl-
edgement Research Group’s framework for content-based
information retrieval. Figure 6 shows the QBH interface
developed where one can hum a query which would be
transcribed by a pitch tracker written by [8] and converted
to PR4ENV. Future work also includes integrating this and
other interfaces to music inputs that have been developed
include a text contour input and polyphonic audio file in-
put [http://km.doc.ic.ac.uk] to the current early prototype.

5. CONCLUSION

We have outlined a polyphonic music retrieval system de-
sign and described its development in detail. These in-
clude details of the document preprocessing and index-
ing, query processing and formulation and the similar-
ity computation using musical n-grams from polyphonic
music data. An early prototype has been shown and we
are currently investigating enhancements for incorporat-
ing proximity-based retrieval.

6. ACKNOWLEDGEMENTS

This work is partially supported by the EPSRC, UK.

7. REFERENCES

[1] Baeza-Yates, R and Ribeiro-Neto, B. Mod-
ern Information Retrieval. ACM Press Addi-
son Wesley, 1999.

[2] Doraisamy, S and Rüger, S. “Robust Poly-
phonic Music Retrieval with N-grams”, Jour-
nal of Intelligent Information Systems, 21(1),
53–70.

[3] Doraisamy, S and Rüger, S. “Position Index-
ing of Adjacent and Concurrent N-Grams for
Polyphonic Music Retrieval”, Proceedings of
the Fourth International Conference on Mu-
sic Information Retrieval, ISMIR 2003, Balti-
more, USA, 2003, pp 227–228.

[4] Downie, S. “Evaluating a Simple Approach
to Music Information Retrieval: Conceiving
Melodic N -grams as Text”. PhD Thesis, Uni-
versity of Western Ontario, 1999.

[5] Lemur Toolkit. http://www-
2.cs.cmu.edu/l̃emur.

[6] Nagler, G. GN MIDI Solutions.
http://www2.iicm.edu/Cpub.

[7] Pickens, J. “A Comparison of Language Mod-
eling and Probabilistic Text Information Re-
trieval”, 1st Annual International Symposium
on Music Information Retrieval, ISMIR 2000,
Plymouth, USA, 2000.

[8] Tarter, A. “Query by Humming”, Project Re-
port, Imperial College London, 2003.

[9] Uitdenbogerd, A and Zobel, J. “Melodic
Matching Techniques for Large Databases”,
Proccedings of ACM Multimedia ’99, pp 57-
66.

[10] Zhai, C. “Notes on the Lemur TF-IDF model”,
http://www-2.cs.cmu.edu/lemir/1.9/tfidf.ps,
Unpublished report.

