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How Do You Know It’s “Your” Song When They

Finally Play It?
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What information do listeners use to “Name that Tune”? This question
was investigated in a two-phase experiment. In Phase 1, the participants
heard familiar melodies that were played on a note-by-note basis until
they were identified. In Phase 2, each note of the melody was analyzed
along a variety of musical dimensions. Multiple regression analyses de-
termined which musical characteristics predicted identification perfor-
mance. Identification was most strongly associated with notes located at
phrase boundaries, notes that completed alternating sequences of rising
and falling pitches, and metrically accented notes. As well, identification
peaked after listeners heard moderate amounts of information (i.e., 5–7
notes). The data suggest that melody identification is a holistic, all-or-
none process and that parallels can be drawn between melody and spo-
ken word identification. Implications for current theories, future research,
and the relationship between music perception and melody identifica-
tion are discussed.
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RESEARCH on object identification has tended to focus on visual and lin-
guistic objects to the exclusion of other types of stimuli such as music.

This is surprising given the frequency with which musical stimuli are en-
countered outside of the laboratory (A. J. Cohen, 1990; Gianetti, 1982;
Stewart & Furse, 1986; Yalch, 1991) and the ease with which they are
identified inside the laboratory (Andrews, Dowling, Bartlett, & Halpern,
1998; Bartlett, Halpern, & Dowling, 1995; Bartlett & Snelus, 1980; Cuddy,
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1993; Hébert & Peretz, 1997; Maylor, 1991; Schulkind, 1999; Schulkind,
Hennis, & Rubin, 1999; White, 1960). The ease with which melody iden-
tification is achieved suggests that listeners retain a great deal of informa-
tion about the music they know. In fact, research shows that listeners are
accurate at reproducing both the pitch and tempo of familiar music (Halpern,
1988, 1989; Levitin, 1994; Levitin & Cook, 1996). However, these data
do not explain how listeners use this information to match a physical stimu-
lus with its corresponding mental representation.

Some researchers have addressed this issue by assessing melody identifi-
cation after selectively altering one or another aspect of familiar melodies
(Hébert & Peretz, 1997; Schulkind, 1999; White, 1960). Although these
studies demonstrate that both pitch and temporal manipulations influence
identification, two aspects of this method limit the generalizability of their
conclusions. First, the manipulations used in these experiments were fairly
gross. A common manipulation involved preserving the pitch pattern while
equating the duration of every note (Hébert & Peretz, 1997; Schulkind,
1999; White, 1960), or preserving the temporal pattern while equating the
pitch of every note (Hébert & Peretz, 1997; White, 1960). Second, this
approach assumes that manipulating one aspect of the melody (e.g., rhythm)
will have negligible effects on the perception of other musical features. Many
experiments demonstrate that musical features share interactive rather than
additive relationships (Boltz, 1991; Jones & Boltz, 1989; but see also Hébert
& Peretz, 1997; Palmer & Krumhansl, 1987a, 1987b). Therefore, the strat-
egies used to identify altered versions of familiar melodies may be different
from those used to identify unaltered versions of the same melodies.

Conducting research using unaltered versions of familiar melodies is
complicated because the multilayered, interactive structure of music pro-
vides a wide range of musical features that could contribute to identifica-
tion (Jones, 1987). The current experiment overcame this problem by rely-
ing on the vast music perception literature to narrow the focus of the
investigation. Simply stated, a musical feature that is difficult to perceive
will be unlikely to aid identification. However, this argument does not im-
ply that all easily perceived musical features play a role in melody identifi-
cation. For example, although listeners can easily perceive transpositions
to different keys and/or registers, these changes have little effect on identi-
fication (Dowling, 1978). In addition, the experiment was designed to make
use of multiple regression analyses, which allow a large number of poten-
tial predictor variables to be assessed simultaneously.

The main goals of the current experiment were to answer two questions
about melody identification that lie at the heart of object identification
research, in general (Tarr & Vuong, 2002). First, what are the fundamental
units that are used to identify familiar melodies? Second, how is informa-
tion in the environment compared with stored representations to allow
identification?
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What Are the Fundamental Units for Melody Identification?

Given that music is composed of serially ordered, discrete pitches in time,
individual notes would seem to be the logical answer to the fundamental
unit question. However, it is possible that listeners do not attend to indi-
vidual notes, but rather analyze the overall shape or structure of the melody.
These contrasting approaches to melody identification roughly correspond
to the distinction between analytic and holistic processing, an issue with a
long history in studies of both language and music processing (Banich &
Heller, 1998; Bever & Chiarello, 1974; Gates & Bradshaw, 1977; Kimura,
1961, 1964). Analytic processing of music would occur if the listener broke
the melody down into its constituent components, analyzed each compo-
nent on a note-by-note basis, and summed the information contained in
each note to reach an understanding of the stimulus. For example, listeners
might represent “Frosty the Snowman” as a sequence of frequencies or
chromas (e.g., F4 D4 E�

4 F4 B�
5 A5 B�

5 C5 B�
5 A5 G4 F4; for simplicity, informa-

tion regarding temporal characteristics of the notes is omitted from this
discussion). This possibility is dubious given that listeners easily recognize
familiar melodies transposed to new keys or registers (Dowling, 1978).
Alternatively, listeners may analyze the intervals between successive notes.
As such, listeners might represent “Frosty the Snowman” as either a se-
quence of intervals (m3 m2 M2 P4 m2 m2 M2 M2 m2 M2 M2), a se-
quence of contour directions (↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↓), or a combination of
interval and contour information (↓m3 ↑m2 ↑M2 ↑P4 ↓m2 ↑m2 ↑M2
↓M2 ↓m2 ↓M2 ↓M2). Research is consistent with the idea that listeners
represent contour and interval information at this level of detail and that
the dominant representation varies with the familiarity and length of the
melody (Dowling, 1978; Dowling & Bartlett, 1981; Edworthy, 1982, 1985).
Thus, an analytic approach to melody identification would consist of match-
ing the string of elements in the physical stimulus with the corresponding
sequence stored in memory. For example, if the first three elements of a
melody were ↓m3 ↑m2 ↑M2, “Frosty the Snowman” would be a candi-
date response. This candidate title would be retained if the next interval
was ↑P4, but eliminated if it was anything else.

Although the possibilities described in the preceding paragraph differ in
terms of the amount of detail included in the mental representation, they
all agree that melodies are stored as ordered strings of discrete, coherent
elements (notes, intervals, etc.). However, it is also possible that informa-
tion about individual notes is lost as they are blended into a unified percept
or Gestalt. Consider the following symbol: +. People generally perceive this
as a plus sign, rather than as two intersecting line segments at right angles
to one another. The individual elements are lost when they are combined to
form a meaningful object. Similarly, the individual elements of a melody
may be blended to form a larger object that is represented in terms of its
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global pitch and temporal structure rather than as a summation of its indi-
vidual elements. Thus, a holistic approach to melody identification might
be achieved by matching information about the global structure of a melody
with its corresponding psychological representation.

Research on music cognition generally shows that the way music is pro-
cessed depends on the abilities of the participants and the demands of the
experimental task (Bever & Chiarello, 1974; Gates & Bradshaw, 1977;
Robinson, 1977; Robinson & Solomon, 1974). For example, Peretz and
Morais (1987) conducted a series of dichotic listening studies similar to the
monaural experiments run by Dowling (1978; Dowling & Fujitani, 1971).
Peretz and Morais reasoned that whereas remembering the contour of a
melody requires holistic processing, remembering the interval structure re-
quires analytic processing. Given that the left and right hemispheres ap-
pear to be specialized for analytic and holistic processing, respectively (e.g.,
Banich & Heller, 1998), Peretz and Morais predicted that a left hemisphere
(right ear) advantage should be observed when distinguishing between two
melodies that share the same contour, but possess different intervals. Con-
versely, a right hemisphere (left ear) advantage should be observed when
distinguishing between melodies that differ in contour. These predictions
were generally supported under several testing conditions. In another set of
studies, Peretz, Morais, and Bertelson (1987) instructed listeners to either
pay attention to isolated notes, pay attention to the contour, or make aes-
thetic judgments of the melody; a control group was given no explicit in-
structions. Whereas the first task would engage analytic processing, the
other two tasks would be more likely to involve holistic processing. On a
subsequent recognition memory test, the listeners who paid attention to
isolated notes (analytic processing) showed the expected right ear/left hemi-
sphere advantage compared with the control group. However, the contour
and aesthetic judgment groups did not show the expected left ear/right
hemisphere advantage. Peretz et al. argued that these results indicate that
right hemisphere, global processing of music is automatic; it occurs regard-
less of whether the listener chooses to engage in it or not. Analytic process-
ing of music is more strategic and is exploited at the whim or ability of the
listener.

Given that listeners have some flexibility in the application of these vari-
ous processing strategies, it is not clear how they will be allocated in a
melody identification task, which is quite different from the recognition
tasks used in previous research. However, if listeners adopt analytic strate-
gies, one would expect to see strong relationships between identification
performance and characteristics of individual notes or pairs of notes (i.e.,
intervals). If listeners tend to adopt holistic strategies, one would expect to
see strong positive relationships between identification performance and
characteristics that span several notes, and/or provide information about
global properties of the melody. The sections that follow classify a range of
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musical characteristics as indexes of either analytic or holistic processing.
In classifying musical characteristics as analytic or holistic, we extended
the philosophy adopted by Peretz and Morais (1987), who considered in-
tervals to be an analytic property and contour to be a holistic property.
Therefore, characteristics of individual notes or intervals were considered
to be analytic properties and characteristics of longer sequences of notes
were considered to be holistic properties.

Musical Characteristics Associated With Analytic Processing

INTERVALS

An interval refers to the pitch distance between two consecutive notes.
One could argue that intervals should be considered as the fundamental
unit of music identification because isolated notes have no inherent mean-
ing in a melody identification task. That is, an isolated tone could conceiv-
ably be the first note of any melody transposed to the appropriate key; only
after the second notes/first interval can some melodies be eliminated from
consideration. Intervals can be categorized along many dimensions. Trained
listeners can easily distinguish intervals by size, and untrained listeners can
do so when given a familiar frame of reference (J. D. Smith, Kemler Nelson,
& Appleton, 1994). In a corpus of traditional folk tunes, Dowling (1978)
found that relatively small intervals were predominant. Therefore, one might
expect relatively large intervals to facilitate identification because they are
distinctive. Conversely, Narmour (1990) has argued that listeners tend to
expect smaller intervals (see also, Schellenberg, Adachi, Purdy, &
MacKinnon, 2002). Therefore, small intervals might facilitate identifica-
tion because they conform to listener expectations.

Intervals also differ in terms of their direction: rising to a higher pitch,
falling to a lower pitch, or remaining the same. One could predict that
falling pitch contours, which often signal the end of a musical phrase, would
facilitate identification relative to rising pitch contours. Finally, intervals
may also be distinguished by their perceived consonance, which is related
to how pleasant an interval sounds (see, Krumhansl, 2000, for a discus-
sion). According to Western music theory, perfect intervals (unisons, oc-
taves, fifths, and fourths) are perceived as the most consonant. Major and
minor intervals (seconds, thirds, and sixths) are perceived as less conso-
nant, with augmented and diminished intervals being the least consonant.
Empirical research generally validates these traditional notions of conso-
nance (Hutchinson & Knopoff, 1978; Kameoka & Kuriyagawa, 1969;
Krumhansl, 1990). However, this agreement does not indicate whether the
relationship between melody identification and interval consonance will be
inverse or direct.
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DURATION

One might argue that duration is a holistic property, if it is measured rela-
tive to the lengths of other notes. However, duration will be considered an
analytic property because the duration of a single note is independent of the
durations of surrounding notes. There are several reasons to suspect that long
notes will be locations where identification is especially likely to occur. For
example, relatively long notes and/or notes followed by relatively long silent
intervals tend to attract attention, thereby creating temporal accents (Handel,
1989; Jones, 1987; Jones & Boltz, 1989). Temporal accents often co-occur
with other kinds of musical accents, which would make these locations places
where the complex hierarchical structure of the melody was revealed. Put an-
other way, temporal accents may represent locations where musical expecta-
tions are either confirmed or violated. This argument implies that relatively
long notes provide information that is not available at other serial locations.
However, one need not adopt this assumption to argue that listeners will be
more likely to identify melodies at relatively long notes. Changes to a melody
are easier to detect if the changed note is relatively long (Monahan, Kendall,
& Carterette, 1987) or is preceded by a relatively long silent interval (Jones,
Boltz & Kidd, 1982). These data suggest that listeners pay more attention to
relatively long notes. As such, relatively long should also be relatively familiar,
which may help the listener orient to the melody in the way that a relatively
familiar intersection helps a traveler orient to an unfamiliar city. According to
this argument, long notes do not provide special information; they are simply
the locations in the melody that the listener knows best. A third possibility is
that relatively long notes provide a “break in the action” during which no new
information is given; this might allow the listener to analyze and integrate
what has recently been heard.

PITCH HEIGHT

Some researchers have hypothesized that extreme notes stand out. Thus,
one might predict that notes that were either relatively low or relatively
high in pitch would facilitate identification.

Musical Characteristics Associated With Holistic Processing

TONAL FUNCTION

One of the most highly studied aspects of Western music is tonal struc-
ture (Krumhansl, 1979, 1990; Krumhansl & Kessler, 1982), which refers
to the fact that compositions are typically organized around one central
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tone, the tonic (Cuddy, Cohen, & Mewhort, 1981; Krumhansl, 1979).
Important tones—those that are closely related to the tonic—are sounded
more frequently, for longer durations, and are more likely to mark the
ends of phrases than are the other diatonic tones (Jones, 1987). One might
argue that tonal function should be considered an analytic characteristic
because it is a property associated with a single note. However, this prop-
erty is determined by the relationship between a single note and the overall
musical context. Thus, tonal function is a holistic characteristic because its
appreciation depends on the listener’s overall interpretation of the melody.

CONTOUR PATTERNS

Contour refers to the pattern of rising and falling pitches in a melody;
according to some researchers, contour information is more fundamen-
tal to music processing than interval information (Dowling, 1978;
Dowling & Fujitani, 1971; but see also Dowling & Bartlett, 1981;
Edworthy, 1982, 1985). A reversal of contour direction refers to a change
from a rising pitch line to a falling pitch line, or vice versa. Research
has shown that alterations to a previously heard melody are more eas-
ily detected when they occur at contour reversals than when they occur
at other locations (Dyson & Watkins, 1984). Further, Jones (1987; Jones
& Ralston, 1991) has argued that points of contour inflection serve as
melodic accents that draw the listeners’ attention and have shown that
changes in contour direction significantly affect melody perception
(Boltz, Marshburn, Jones, & Johnson, 1985; Cuddy et al., 1981;
Monahan et al., 1987). Contour reversals are considered an index of
holistic processing because their function has been likened to that of
corners in visual displays; that is, they establish the broad outlines of
the melody (Dyson & Watkins, 1984).

Other contour-based patterns may also facilitate identification by help-
ing to distinguish melodies from one another. However, the music cogni-
tion literature does not provide a great deal of guidance with respect to
what contour patterns might be associated with melody identification. Some
rule-based musical grammars have been proposed (Deutsch & Feroe, 1981),
but other researchers have questioned whether these coding schemes are
applicable to naturally occurring musical forms (Boltz, 1991). Looking
outside the music perception literature, research in serial pattern learning
suggests that runs and trills are more easily encoded than are other patterns
(Restle, 1970; Restle & Brown, 1970). A run can be defined as series of
consecutive elements (1 2 3 4), whereas a trill consists of an alternating
pattern of elements (2 3 2 3). Similar patterns are easy to locate in musical
sequences and may facilitate memory and/or identification in this domain,
as well.
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METRICAL ACCENT

The metrical structure of a melody frames the entire piece and has sig-
nificant effects on melody perception. Palmer and Krumhansl (1987a,
1987b) found that “completeness” ratings for an interrupted melody were
significantly higher when they ended on a metrically accented location rather
than an unaccented location. Similarly, Dowling, Lung, and Herrbold (1987)
found that melodies with interleaved distractor notes were easier to iden-
tify if the target notes fell on metrically accented, rather than metrically
unaccented, locations. Therefore, metrically accented locations should fa-
cilitate melody identification relative to unaccented locations.

RHYTHMIC FACTORS

Rhythm—which refers to the specific pattern of durations used to fill a
metrical structure—plays an important role in melody perception (Jones,
Summerell, & Marshburn, 1987) and influences identification of familiar
melodies (Schulkind, 1999). Rhythm is considered to be a holistic property
because Jones (1987) has persuasively argued that rhythm guides the lis-
teners’ attention and highlights important aspects of the global structure of
a melody. Identification should be more likely when the duration of one
note is different from the previous note, especially if the second note is
longer than the first. Second, people are best able to reproduce a rhythmic
pattern if the intervals between events form simple integer (2:1, 3:1) rela-
tionships (Deutsch, 1983; Essens & Povel, 1985; Handel, 1989). Essens
(1986) found that reproductions of rhythmic patterns that consisted of
subdivisions with noninteger relations (e.g., 2.5:1) were distorted towards
an integer ratio (e.g., 2:1). Thus, listeners might be more able to identify
melodies when a note is relatively long compared with the previous note
and the durations of the notes form an integer ratio.

PHRASE BOUNDARIES

Phrase boundaries play an important role in musical structure and there-
fore may play an equally important role in melody identification. Phrase
boundaries serve as the anchors upon which the melody is hung and play a
critical role in the generation and confirmation or violation of musical ex-
pectancies (Jones, 1987; Narmour, 1990). The beginning of the phrase marks
the location where musical tension is set in motion and the end of the
phrase is where this tension is often resolved. As well, multiple forms of
musical accents (relatively long notes, metrical accents, the tonic and closely
related pitches) tend to co-occur at phrase boundaries. Therefore, phrase
boundaries may provide information about the global structure of a melody
that help the listener either interpret what they have just heard or predict



225Melody Identification

what will come next. In other words, phrase boundaries may provide in-
formation about the global structure of the melody that is difficult to dis-
cern within the phrase. This hypothesis suggests that melody identification
will be highly correlated with notes both at the beginning and the end of
phrases.

Another rationale for predicting that melody identification will be espe-
cially likely to take place at phrase boundaries is a based on a modified
interpretation of the holistic view of melody processing. Rather than co-
hering into a single monolithic entity, individual notes might cohere into
smaller chunks—phrases—that are strung together to form the melody. In
fact, many theorists have argued that music is structured hierarchically
(Jones, 1987; Lerdahl & Jackendoff, 1983), and research shows that lis-
teners are sensitive to different levels of a musical hierarchy (see Krumhansl,
2000, for a review). It is possible that phrases may be the lowest level of the
hierarchy that provides enough information to allow identification. This
hypothesis predicts that identification performance will be higher at the
end of the phrase than at the beginning because the end of the phrase would
mark the completion of an identifiable unit.

How Is the Physical Stimulus Reconciled With Its Corresponding
Mental Representation?

Many classes of theories have been proposed to explain how people con-
nect a physical stimulus with its corresponding mental representation.
However, few of these theories seem well suited to answer this question for
musical stimuli. For example, feature-based theories have been very influ-
ential in understanding visual object recognition (Biederman, 1987). How-
ever, the features used to identify melodies have yet to be ascertained; in
fact, that is one of the major goals of the current work. Prototype theories
would also have trouble explaining melody identification (Rosch, 1973).
Prototype theory works best for concepts like “birds” or “furniture” that
contain many different exemplars linked by family resemblance. Thus, it
may help explain why “Rudolph the Red-Nosed Reindeer” is a “better”
Christmas Carol than “The First Noel,” but would have difficult explain-
ing how listeners distinguish these songs from each other.

One reason why these theories may fail to explain melody identification
is because they are based on visuospatial stimuli; in contrast, music is an
auditory-temporal stimulus. However, researchers have shown extensive
interest in studying spoken word identification. Like melodies, spoken words
are auditory stimuli, for which the temporal structure is a crucial compo-
nent of its identity. Therefore, one might expect theories of spoken word
identification to provide more insight into melody identification than theo-
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ries based on visual stimuli. In particular, the cohort theory of spoken word
identification (Marslen-Wilson, 1987; Marslen-Wilson & Tyler, 1980) would
seem to be a good approximation to melody identification because no theory
places a stronger emphasis on the temporal structure of the to-be-identified
stimulus (Juscyzk & Luce, 2002). Briefly, the cohort model relies on bot-
tom-up processing and places special weight on initial sounds of the word
(Marslen-Wilson & Zwitserlood, 1989; Marslen-Wilson, Moss, & van
Halen, 1996). Initial sounds activate a cohort of words from the lexicon
that share those initial sounds. Identification occurs when enough infor-
mation is given to distinguish the target from all other entries in the lexi-
con. The process for melodies might proceed as follows: if a listener hears
the first few notes of “Frosty the Snowman,” this song would be a candi-
date response as would all other songs that shared these initial elements.
Each candidate would be retained until information inconsistent with that
candidate was presented, and identification would occur when only one
candidate remained viable.

In addition to emphasizing the temporal sequence of elements, the co-
hort model is a good match for melody identification because some lines of
evidence suggest that the initial notes of a song are particularly important
for melody identification (Schulkind, 2003). Several influential theories of
music perception hold that the generation and confirmation or violation of
expectancies are central to understanding music (Jones & Boltz, 1989;
Narmour, 1990). One would expect the initial notes of the melody to be
locations where expectancies were developed. For example, some theorists
have argued that the first few notes establish the key of a melody, one of
the most important organizing principles of music (Butler, 1992). How-
ever, at least one set of data in the literature could be viewed as contradic-
tory to the general claim that the first notes of a melody convey special
information. Halpern (1984) showed that similarity ratings of melodies
were unrelated to the musical characteristics of the first two notes. How-
ever, this result might have obtained because the participants did not actu-
ally hear the melodies; rather, they sorted index cards that contained the
titles. Therefore, the experiment may not have been particularly musical,
an idea reinforced by the fact that genre—a nonmusical characteristic—
was the primary determinant of similarity.

The best way to assess the possibility that melody identification makes
use of a process similar to that outlined by the cohort model is to examine
how identification unfolds across the melody. The cohort model holds that
identification will occur when enough information is provided to distin-
guish a melody from all others stored in memory. This argument implies
that identification will be low early in the melody because the first few
notes will not provide enough information to distinguish a melody from all
other melodies familiar to the participant. Identification should peak at the
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point when the target is distinguishable from all others; knowing exactly
where this will occur is difficult to predict. However, beyond this point,
additional information should prove relatively ineffective. Put more sim-
ply, the cohort-based model of melody identification predicts an inverted
U-shaped function between identification performance and the number of
notes heard. This prediction is simply a restatement of the general principle
that initial segments of the melody will be particularly valuable for identi-
fication. Examining the relationship between identification and serial posi-
tion will also be valuable because it will provide normative data about the
amount of information listeners need to identify familiar melodies.

Experiment

The current experiment adopted a novel, two-phase approach to ad-
dress the question of what factors facilitate melody identification. The first
phase consisted of a melody identification task. Unlike past research, which
has used either novel melodies (Halpern, 1984) or transformed versions of
familiar melodies (Hébert & Peretz, 1997; Schulkind, 1999; White, 1960),
the current experiment used unaltered versions of familiar melodies. The
target melodies were presented on a note-by-note basis until identification
was achieved. The second phase consisted of an in-depth musical analysis
of these melodies (see Appendix). The first 12 notes of each melody were
coded on a number of musical dimensions (e.g., tonal function, contour,
intervals, duration) that were identified as potential mediators of identifi-
cation performance; Figure 1 displays the first 12 notes and associated
musical analysis for “Frosty, the Snowman.” Multiple regression analyses
determined how well the coding scheme from the second phase of the ex-
periment predicted the melody identification behavior in the first phase.

METHOD

Participants

Twenty-eight undergraduate volunteers received partial credit toward a course require-
ment in exchange for their participation. Data on music training was available for only 24
of the 28 participants. These participants averaged 3.50 years (SD = 3.69; range 0–13) of
formal musical instrument training and 0.50 years (SD = 1.06; range 0–4) of performance
in organized singing groups; none were music majors.

Materials

The main criterion for the selection of the target melodies was their familiarity to the
participant population. A group of 80 undergraduates was asked to write down a list of
songs that they thought “everyone would know.” A second group of 97 undergraduates
rated their familiarity with these songs. The 34 songs (see Appendix) used in the experiment
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were selected because a majority of the second group claimed that they “easily knew most
of the words.” The stimuli incorporated a wide range of keys (e.g., C, G, F, E�, A�), both
simple (2/4, 3/4, 4/4) and complex meters (6/8), and were drawn from several genres (e.g.,
patriotic songs, Christmas Carols, children’s songs, folk music, “pop” music, movie songs,
Broadway show tunes).

A published sheet music arrangement was obtained for each song. The first 20 notes of
the melody line of the published arrangements were transferred to a MacIntosh IIsi com-
puter using the Songworks (Ars Nova) software package. This program was also used to

Tonal function
TF 2 5 6 3 6 2 6 3 2 5
TF-K&K 4.1 5.2 6.4 2.9 6.4 3.5 6.4 2.9 3.7 5.2

Pitch Height
PH 7 9 14 13 14 16 14 13 11 9
PH-Med 4 2 3 2 3 5 3 2 0 2

Contour
Direction 1 1 1 -1 1 1 -1 -1 -1 -1
Cnt-Change 3 1 1 3 3 1 3 1 1 1
Cnt-Inflection 1 1 3 3 1 3 1 1 1 3

Interval
Int-Size 1 2 5 1 1 2 2 1 2 2
Int*Dir 1 2 5 -1 1 2 -2 -1 -2 -2
PMMA 2 3 4 2 2 3 3 2 3 3
Int-K&K 285 275 245 285 285 275 275 285 275 275
Int-H&K .49 .24 .03 .46 .46 .17 .16 .46 .20 .22

Duration
#Beats .5 1 2 .5 .5 1 1 1 1 2

Rhythmic factors
Rel-Dur .33 2 2 .25 1 2 1 1 1 2
Interval ratios 2 2 2 2 2 2 2 2 2 2
Successive ratios 1 1 1 1 1 1 1 1 1 1

Meter
Meter-L&J 1 3 2 2 1 3 2 3 2 3
Meter 1 4 2 2 1 4 2 3 2 4

Phrasing
Phrase placement 3 2 1 1 2 3 4 3 2 1

Contour patterns
Alternations 0 0 0 0 1 0 0 0 0 0
Runs 0 0 1 0 0 0 0 0 1 2
Pairs 0 0 0 0 0 0 0 0 0 0

Serial Position
SP 3 4 5 6 7 8 9 10 11 12
SP2 9 16 25 36 49 64 81 100 121 144
SPu 1 2 3 4 5 5 4 3 2 1

Fig. 1. The first 12 notes of “Frosty, the Snowman” and its associated musical analysis. The
analysis is presented for notes 3–12, as these were the notes used in subsequent analyses.

http://caliber.ucpress.net/action/showImage?doi=10.1525/mp.2003.21.2.217&iName=master.img-000.png&w=335&h=53
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present the melodies, which were heard over headphones with a piano timbre. The first two
authors adjusted the tempo of each melody to sound “natural” (M = 117.62 quarter notes
per minute, SD = 26.83; range 75–150). Presentation order was randomized and played in
either a backward or forward order. Order of presentation did not influence initial data
analyses, and thus was dropped from the analyses reported in the results section.

Musical Analysis

The first two authors conducted the musical analysis. Each coder analyzed the first 12
notes of each song by using the dimensions described below (see Figure 1). Although iden-
tification data were available for up to 20 notes, only the 3rd–12th notes were analyzed.
First notes were not analyzed because identification data were not collected for the first
note in isolation; second notes were not analyzed because the second note failed to yield
data values for the contour change and local pattern measures (see below). The analysis
ceased at note 12 because the vast majority of melody identifications (87%) occurred by
this point. Discrepancies between the two coders were resolved by discussion. The follow-
ing predictors were entered into the regression model. When appropriate, different mea-
sures of the same general construct are distinguished by abbreviations in parentheses.

Pitch Factors

Tonal Function
 Tonal function (TF) was coded in terms of perceived centrality to the key based on

traditional Western music theory. In decreasing order of centrality, this system distinguished
between tonic, dominant, mediant, leading tone (because its presence strongly implies the
tonic), other diatonic tones, and nondiatonic tones. This coding scheme implied a linear
relationship between different types of tones, which may not reflect the actual relationship
(Krumhansl, 1979, 1990). Therefore, goodness of fit ratings for the various tones in the
chromatic scale—as reported by Krumhansl and Kessler (1982)—were also used (TF-K&K).

Pitch Height
Pitch height (PH) was coded using either the lowest tone (A�

3) or the median (PH-Med)
tone in the corpus (G4) as an anchor. The anchor notes for these measures were assigned a
value of 0, with all other notes coded in terms of the number of semitones from the anchor.
All values for PH-Med were positive regardless of whether the note was higher or lower in
pitch than the anchor.

Contour
Several aspects of contour were coded. First, we considered whether a note created a

rising (+1), falling (-1), or neutral (0) interval (Dir). Next, we coded whether a note created
a change in pitch contour direction (Cnt-Chng). For example, in the sequence C4 E4 D4 C4,
the D4 changes what had been a rising pitch line to a falling pitch line. Notes were coded as
either continuing the pitch trajectory (1), or altering the pitch trajectory (3); an intermediate
value (2) was given to unisons because the effect of unisons on pitch trajectory was indeter-
minate. Finally, points of contour inflection (Cnt-Inf) were also coded. This factor differed
from the other contour measures in that it coded information about the relationship of the
intervals preceding and following the coded note. If the intervals preceding and following a
given note differed in direction—as with the E4 in the example just presented—the note was
considered a point of contour inflection and was coded with a 3. If the preceding and
following intervals were in the same direction (e.g., D4 above), the note was not considered
a point of contour inflection and was coded as a 1. Owing to their ambiguity, notes followed
by unisons were coded with an intermediate value of 2. If a note was preceded by a unison, the
following interval was compared with the direction of the closest, preceding, nonunison inter-
val. For example the second E4 in the sequence D4 E4 E4 C4 was coded as a point of contour
inflection because, whereas the D4-E4 interval is rising, the E4-C4 interval is falling.
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Interval
Interval size was coded in semitones. For one measure, rising and falling intervals were

treated identically (Int-Size), whereas another incorporated information about direction as
well (Int*Dir). The perceived consonance of different intervals was also considered as a
factor. Again, one method was based on traditional Western music theory. In order of de-
creasing consonance, intervals were identified as perfect, major, minor, and augmented
(PMMA). Published judgments of interval consonance were also taken from both Kameoka
and Kuriyagawa (1969; Int-K&K) and Hutchinson and Knopoff (1978; Int-H&K).

Temporal Factors

Duration
Notes were coded in terms of their length relative to both the beat period (#Beats) and

the preceding note (Rel-Dur). For example, if a song was written in 4-4 meter, a quarter
note preceded by an eighth note would be coded as a 1 for #Beats, and a 2 for Rel-Dur.
Similarly, notes were also coded in terms of whether their duration formed an integer rela-
tionship between either the beat period (interval ratios) or the preceding note (successive
ratios).

Meter
One system for coding metrical structure was based on Lerdahl and Jackendoff’s (1983)

model (Meter-L&J). Three levels were coded: strong (first/third beat of the measure), weak
(second/fourth beats of the measure), and weaker (half-beats). Notes that spanned more
than one beat were coded using the beat on which the note began. Songs that did not
contain a third or fourth beat were coded in the same way. For songs written in 2/4 meter,
any note beginning on the first beat was coded as strong, any note beginning on the second
beat was coded as weak, and any note beginning on a half-beat was coded as weaker. For
songs written in 3/4 meter, any note beginning on the first or third beat was coded as strong,
any note that began on the second beat was coded as weak, and all other notes were coded
as weaker. For songs written in 6/8 meter, notes that began the measure were coded as
strong; notes that began on the second beat (the fourth eighth-note) were coded as weak,
and all other notes were coded as weaker.

A second system (Meter) separated the first and third beats into separate categories (e.g.,
strongest and strong), followed by the second/fourth beats (weak) and half-beats (weaker).
For songs written in 2/4 meter, any note beginning on the first beat was coded as strongest,
any note beginning on the second beat was coded as weak, and any note beginning on a
half-beat was coded as weaker. For songs written in 3/4 meter, any note beginning on the
first beat was coded as strongest, any note beginning on the third beat was coded as strong,
any note that began on the second beat was coded as weak and all other notes were coded
as weaker. For songs written in 6/8 meter, notes that began the measure were coded as
strongest; notes that began on the second beat (the fourth eighth-note) were coded as weak,
and all other notes were coded as weaker. The second system was adopted to evaluate the
possibility that the first beat of the measure serves as the anchor around which the rest of
the measure is organized.

Melodic Factors

Phrase Placement
Because the determination of phrase boundaries is difficult to assess objectively, initial

assessments were made using verbal phrase boundaries from the song lyrics. Notes were
then coded as either forming the beginning or ends of a phrase (1), or in terms of the
number of notes separating the note from a phrase boundary (e.g., the second and penultimate
notes of a phrase were coded as 2, etc.). The placement of phrase boundaries was corrobo-
rated by examining whether notes at phrase boundaries tended to be marked by multiple
pitch (tonic triad members, contour changes, etc.) and temporal (relatively long notes, met-
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rically accented notes) accents. A one-way analysis of variance (ANOVA) showed that ac-
cent density differed across placement in the phrase, F(3, 230) = 8.05, MSE = 728.8, p < .01.
Tukey tests (α = .05) indicated that notes at the beginnings and ends of phrases created pitch
and temporal accents more frequently than notes in the middle of phrases, but that notes in
the middle did not differ from one another.

Local Patterns
Three types of local patterns were considered. Two (alternations and runs) were se-

lected on the basis of previous work (Restle, 1970; Restle & Brown, 1970). The third
(pairs) was selected because it was a recurring pattern in the selected corpus. Alternations
were defined as 2 consecutive changes in pitch contour direction. As such, alternations
were similar to trills but did not require that the exact same notes repeat. For example, in
the sequence C4 E4 C4 D4, the D4 would be considered the completion of an alternation
and would be coded as a 1. If the next note created another contour change (e.g., C4), that
note (C4) was coded as a 2, and so on. In this way, the alternation variable coded both the
presence and length of an alternating sequence. A run was defined as four consecutive
notes that shared either a rising or falling pitch trajectory; unisons were not considered
part of a consistent trajectory. The fourth note in the sequence was coded as a 1; if the
next note continued the same trajectory, it was coded as a 2, and so on. Finally, a pair was
defined as any repeated combination of two notes sharing an easily recognizable pitch
relationship. For example, the first six notes of “Twinkle-Twinkle” (F4 F4 C5 C5 D5 D5)
contained three pairs of unisons. The first, second, third, and fifth notes were coded with
a zero; the fourth and sixth notes were coded with a 1 to indicate that they completed the
repetition of a pair).

Serial Position
Serial position (SP) was recorded and entered into the analysis to examine whether early

portions of the melody were differentially important for identification. Three different mea-
sures of SP were recorded to examine whether the relationship between SP and identifica-
tion was linear, exponential, or U-shaped. SP was the serial position of the note in the
melody, and SP2 was the square of this value. SPu was created by assigning a value of 1 to
SPs 3 and 12, a value of 2 to SPs 4 and 11, a value of 3 to SPs 5 and 10, and so on.

Procedure

Participants were tested individually. They were told that they would be asked to iden-
tify a series of familiar songs in as few notes as possible. For each song, listeners initially
heard the first two notes of the song. They were instructed to give one of the following five
responses: (1) “I have no idea”; (2) “It sounds familiar but I am not certain enough to make
a guess”; (3) “I am not sure but it might be________”; (4) “I am pretty sure that it is________”;
or (5) “I am sure that it is________”. The five response options were printed on a sheet of
paper placed on the desk in front of the participant.

If they failed to identify the song with certainty (i.e., response category “5”) after the
first two notes, they heard the first three notes of the song. Notes were added one by one
until either the tune was named with certainty, or the 20th note was reached. If the partici-
pant failed to identify the song by the 20th note, s/he was instructed that a new song was to
be started, but was not told the title of the unidentified tune. Feedback was only provided if
the “certain” response (i.e., option “5”) was used. If a “certain” response was correct, the
participant was told, “That is correct. Now we will begin the next song.” If a “certain”
response was incorrect, the participant was told, “I’m sorry, that response is incorrect,” and
the next trial for that song was played. Participants were required to respond within 10
seconds of the end of a given trial; the experimenter monitored the 10-second window with
a stopwatch. One practice trial (“Old McDonald Had a Farm”) was given to familiarize
participants with the task. At the end of the experiment, participants were given a list con-
taining all 34 songs used in the experiment. They were asked to indicate if any of the target
songs were unfamiliar; these data points (< 2%) were removed from all analyses.
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RESULTS

Multiple regression analyses were conducted to determine which predic-
tor variables were associated with identification performance. Identifica-
tion performance was operationalized in terms of the conditional probabil-
ity of identifying the song at each note. This measure was defined as the
number of participants who identified a song on a given note divided by
the number of participants who had yet to identify the song. For example,
if 7 listeners identified a song after hearing the first 2 notes, and an addi-
tional 7 identified the song after hearing the first 3 notes, the conditional
percent correct for note 2 would be 7/28 = .25, whereas the conditional
percent correct for note 3 would be 7/(28–7) = 7/21 = .33. This dependent
measure was chosen in lieu of raw percent correct because, whereas raw
percent correct would by definition decrease as more and more notes were
heard (and more and more participants had successfully identified the tune),
the conditional percent correct was free to vary from 0% to 100% on
every trial.1

Initial Regression Analysis

The 12 notes from 34 songs yielded a total of 408 data points. However,
data were only used for SPs 3–12. As described earlier, data for SP 1 were
not used because identification data were not collected for the first note in
isolation and data for SP 2 were eliminated because they failed to yield
data values for the contour change and local pattern measures. The loss of
these 68 data points is tolerable, given that no participants were able to
identify any of the songs before SP 3. In addition, data points were elimi-
nated if 5 or fewer participants had yet to identify the song. This proce-
dure, which resulted in the loss of 120 data points, was adopted because
using data when only a handful of listeners had yet to identify a song tended
to inflate the conditional percent correct. Regression analyses were con-
ducted using the “Stepwise” regression technique in SPSS (Release 10.0.5).
For each step, the predictor with the lowest significant p value was entered
into the model (α = .05). Upon entry, all previously entered factors were re-
examined to determine whether or not they should be retained. The model
was considered complete when no additional predictors entered the model.

The results of the regression analysis are summarized in Table 1. Four
variables entered into the overall regression equation: SPu, phrase place-
ment, alternations, and #Beats, F(4, 228) = 24.44, MSE = 291.01, p < .01.

1. A regression analysis conducted with raw percent correct as the dependent measure.
Two significant predictors entered into the regression equation: SPu and meter, F(2, 230) =
15.50, MSE = 123.32, p < .001. Overall R2 for the model was .119, and the two factors
uniquely explained 10.8% of the variance in identification performance.
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The beta coefficient for the SPu variable indicated that identification per-
formance was higher in the middle of the presented melodies (SPs 5, 6, and
7) than at the ends (SPs 3–4, 10–12). In other words, identification perfor-
mance traced an inverted U-shaped function across SP. The beta coeffi-
cients for the phrase placement, alternations, and #Beats factors indicated
that better identification performance was associated with notes at or near
phrase boundaries, notes that completed alternations, and relatively long
notes, respectively.

Individual Differences

A number of subsidiary analyses were conducted to examine the reliabil-
ity of the results in the main analysis and to address some of its limitations.
One possible limitation of the regression analysis was that the skill of the
participant population may have decreased across SPs because the most
proficient participants dropped out of the analyses earlier than the less
proficient participants because they identified the songs sooner. This issue
was examined by conducting separate regression analyses for the more and
less proficient participants. A median split of the data produced a group of
better (n = 15) and worse (n = 13) identifiers; the two groups were not
equal in size because of ties. The better group (M = 6.83, SD = 0.61) iden-
tified songs in fewer notes than the worse group (M = 8.94, SD = 1.04).
This difference was significant, t(26) = 6.66, SEM = .32, p < .01, but may
actually underestimate the difference between the groups because the data
included only songs that were identified correctly.

The procedure for these regression analyses was identical to the used for
the main analysis with one exception; because there were fewer partici-
pants in these analyses, data points were eliminated only if three or fewer

TABLE 1
Summary of Output for Regression Analyses

Predictor Variables Variance Explained

Model SPu Phrase Altern #Beats Meter Pairs R2 Unique R2

Overall .185 .059 .037 .019 .300 .214
Worse .085 .025 .025 .135 .119
Better .091 .038 .023 .030 .182 .169
Random1 .224 .055 .034 .026 .339 .239
Random2 .265 .082 .064 .410 .351
Random3 .205 .069 .039 .313 .249
Random4 .233 .099 .332 .239

NOTE—Values in the table indicate the incremental change in R2 that accompanied the
entrance of each factor into the model. The larger this value, the earlier the factor entered
the model.
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participants had yet to identify the song. Three variables entered into the
overall regression equation for the worse identifiers (see Table 1): SPu, phrase
placement, and alternations, F(3, 215) = 11.01, MSE = 0.02, p < .01. This
pattern is very similar to that produced by the main analysis, the only dif-
ference being the exclusion of the #Beats variable in the analysis. Four
variables entered into the overall regression equation for the better identi-
fiers (see Table 1): SPu, phrase placement, pairs, and meter, F(4, 148) =
24.44, MSE = 291.01, p < .001. This model included the first two predictor
variables from the main analysis, but differed from the main analysis in its
exclusion of #Beats and alternations, and its inclusion of the pairs and
meter variables.

Individual differences in the target melodies were also considered. Al-
though it might have been desirable to pursue this question by conducting
separate regression analyses for each song, the number of data points pro-
duced by each song (i.e., the 10 SPs) was insufficient given the number of
predictor variables included in the main analysis. Therefore, this issue was
addressed by randomly selecting half of the data points for analysis; this
process was repeated four times. As can be seen in Table 1, the four models
based on randomly selected cases were largely in agreement with each other
and with the regression equation based on the data set as a whole. The first
and second factors to enter each model were SPu and phrase placement,
respectively. For two of the models, alternations entered as a third factor.
Two of the models also included meter as a factor: one as the third factor in
the model, the other as the fourth factor.

Participant Analyses

As can be seen in Table 1, the regression analyses converged on a rela-
tively restricted set of predictor variables. Every model included the SPu
and phrase placement variables as the first and second predictors to enter
the model. Four of the models included alternations as the third factor and
three models included meter as a predictor; #Beats and pairs were included
in one model each. However, the regression analyses that produced these
models can be criticized because the units of analyses (notes from each
song) were not independent of one another. In contrast, the performance of
each participant was independent of all other participants. Therefore, the
data were re-analyzed with participants as the unit of analysis to corrobo-
rate the results of the note-based regression analyses. Rather than examine
all of the variables included in the regression models, these analyses fo-
cused on those factors that were found to be significant predictors of iden-
tification.

For each participant, percent correct was calculated separately for each
level of the five predictor variables implicated by the regression analyses.
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For example, the #Beats variable was broken down into three categories:
tones that were less than one beat in length (e.g., SPs 3, 6, and 7 in “Frosty,
the Snowman”), tones that were equal to one beat in length (e.g., SPs 4,
and 8-11 in “Frosty, the Snowman”), and tones that were greater than one
beat in length (e.g., SPs 5 and 12 in “Frosty, the Snowman”). The number
of notes that fell into each category was counted; these numbers varied
from participant to participant because only those notes actually heard by
a participant were included in the analysis; that is, if a participant identi-
fied “Frosty, the Snowman” at SP 7, SP 8–SP 12 were dropped for that
participant. The number of notes within each category that yielded identi-
fication was also tabulated. The proportion of notes in each category that
yielded identification was calculated by dividing the number of notes that
yielded identification by the total number of notes in the category. For
example, across the entire experiment, one participant heard 96, 53, and
13 notes that were less than, equal to, and greater than one beat, respec-
tively. The same participant identified 13 songs after hearing a note that
was less than one beat, 10 songs after hearing a note that was equal to one
beat and 5 songs after hearing a note that was greater than one beat. Thus,
the percentage of notes that yielded identification was 14% (13/96) for
notes that were less than one beat, 19% for notes that were equal to one
beat, and 28% for notes that were greater than one beat.

For all analyses reported in this section, the degrees of freedom were
adjusted by using the Greenhouse-Geisser procedure when appropriate; all
reported degrees of freedom represent the unadjusted values. The p value
for all pairwise comparisons was adjusted using the Bonferroni correction.

A repeated-measures ANOVA was conducted to examine differences
between levels of the phrase placement variable. The data were collapsed
into four categories: phrase boundaries (either the beginning or the end)
and notes occupying positions 1, 2, and “3 or more” notes from a phrase
boundary (see Figure 2). Notes at the beginnings and ends of phrases were
collapsed into a single category because both are places that tend to be
highlighted by pitch and temporal accents. Analyses indicated that there
were no differences in identification performance at the beginnings of phrases
relative to the ends of phrases. The overall ANOVA was significant, F(3,
81) = 33.43, MSE = 0.05, p < .01. Post-hoc comparisons revealed signifi-
cant differences between all levels of the independent variable with the
exception of the comparison between 2 and “3 or more” notes from a
phrase boundary. This suggests that notes at phrase boundaries and, to a
lesser degree, notes close to phrase boundaries facilitated identification rela-
tive to notes in the middles of phrases.

The alternations variable was collapsed into three categories. Notes that
did not complete an alternation, notes that completed a four-note alterna-
tion (four notes were required to complete the pattern so this represented
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the shortest alternation sequences), and notes that completed longer alter-
nation sequences of between 5 and 7 notes (see Figure 3). The repeated-
measures ANOVA was significant, F(2, 54) = 7.64, MSE = 0.04, p < .01.
Post-hoc comparisons revealed that performance in the “no alternation”
condition was significantly worse than in either of the alternation condi-
tions but that the two alternation conditions did not differ from one an-
other. This result indicates that alternations are a valuable feature for iden-
tification, but that extended alternations do not confer any particular
advantage over shorter alternations.

The #Beats variable was recoded into three levels: less than one beat,
equal to one beat, and greater than one beat (Figure 4). The repeated-mea-
sures ANOVA was significant, F(2, 54) = 32.46, MSE = 0.06, p < .01. Post-
hoc comparisons revealed significant differences between all levels of the
independent variable. Thus, identification tended to occur when the par-
ticipants heard relatively long notes.

A repeated-measures ANOVA was conducted to examine differences be-
tween the levels of the meter variable (Figure 5). The overall ANOVA was
significant, F(3, 81) = 22.16, MSE = 0.04, p < .01. Post-hoc comparisons
revealed the following patterns. The first beat of the measure yielded sig-
nificantly better performance than any other location. The third beat of the
measure was not significantly different from either the second/fourth beat
or from the half-beat condition, but the latter two were different from each
other. This pattern was partially consistent with expectations in that the
first beat of the measure was by far the best location for melody identifica-

Fig. 2. Mean percent correct for notes located at phrase boundaries, one note removed from
a boundary, two notes removed from a boundary, and three or more notes removed from a
boundary.

http://caliber.ucpress.net/action/showImage?doi=10.1525/mp.2003.21.2.217&iName=master.img-001.png&w=313&h=175
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tion. However, the relatively poor performance for the third beat of the
measure was surprising, particularly in light of Lerdahl and Jackendoff’s
(1983) work.

Fig. 3. Mean percent correct as a function of alternations; none refers to a note that was not
part of an alternation, 4-note refers to a note that completed a four-note alternation, 5- to
7-note refers to a note that completed an alternation of five or more notes.

Fig. 4. Mean percent correct as a function of duration in beats; duration was categorized as
either less than, equal to, or greater than one beat.

http://caliber.ucpress.net/action/showImage?doi=10.1525/mp.2003.21.2.217&iName=master.img-002.png&w=313&h=185
http://caliber.ucpress.net/action/showImage?doi=10.1525/mp.2003.21.2.217&iName=master.img-003.png&w=302&h=178
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Mean identification was also calculated for notes that were not part of a
pair (M = 0.18; SD = 0.01) and those that were part of the first iteration of
a pair (M = 0.29; SD = 0.05). A repeated-measures ANOVA revealed a
significant difference between the two levels of this variable, F(1, 27) =
79.25, MSE = 0.04, p < .01.

Finally, a repeated-measures ANOVA was conducted to examine the re-
lationship between SP and identification performance. The expected, in-
verted U-shaped pattern was observed (Figure 6). The overall ANOVA re-
vealed a significant effect of SP, F(9, 225) = 9.23, MSE = 0.02, p < .01.
Trend analyses indicated the presence of significant quadratic, F(1, 25) =
31.42, MSE = 0.02, p < .01, cubic, F(1, 25) = 23.68, MSE = 0.02, p < .01,
and fifth order, F(1, 25) = 5.41, MSE = 0.02, p < .03, trends. These results
indicate that identification was most often achieved after moderate amounts
of information.

Confidence Ratings

On average, the songs were identified by the sixth note (M = 6.35; SD =
0.66). However, the number of notes required to identify familiar melodies
may have been overestimated with this method because trials were not termi-
nated until the participant responded with certainty. The participants may
have identified the song, albeit with some hesitation, significantly sooner. There-
fore, we analyzed the confidence ratings to see how identification unfolded
across serial position. For 51.6% of experimental trials, the transition be-

Fig. 5. Mean percent correct as a function of meter; meter was categorized as falling on
either a strongest beat (1st beat in the measure), a strong beat (3rd beat in the measure), a
weak beat (2nd or 4th beat in the measure), or a half-beat.

http://caliber.ucpress.net/action/showImage?doi=10.1525/mp.2003.21.2.217&iName=master.img-004.png&w=313&h=174
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tween the inability to generate a guess (a confidence rating of 1 or 2) and
complete certainty (a confidence rating of 5) occurred within a single note. For
87.0% of trials, the transition from uncertainty to complete certainty occurred
within two notes. These data contradict the hypothesis that the method yielded
inflated estimates of the notes required to identify a melody and suggest that
the process of identifying a melody is akin to the proverbial light bulb sud-
denly being lit; that is, melody identification is a relatively quick, “all-or-none”
behavior. Almost 90% of the time (Table 2), the participants were either un-
able to make a guess (1 or 2) or were completely certain of their response (5).

Fig. 6. Mean percent of songs identified as a function of serial position; the number of songs
identified at each serial position was divided by the total number of notes heard at each
serial position.

TABLE 2
Percentage of Responses in Each Confidence Rating Category

for Correct and Incorrect Responses

All Responses Responses With Titles

Confidence Rating Correct Incorrect Correct Incorrect

No idea 49.31 — — —
Not sure enough to guess 24.38 — — —
Might be 3.68 1.21 13.98 4.62
Pretty Sure 5.54 0.69 21.07 2.61
Certain 14.70 0.49 55.86 1.87

NOTE—“Responses with Titles” are those responses for which the partici-
pant provided the title of a specific song.

http://caliber.ucpress.net/action/showImage?doi=10.1525/mp.2003.21.2.217&iName=master.img-005.png&w=313&h=184
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In addition, if the data are restricted to those instances when the participants
produced a specific song title, more than half of the participants’ responses
were given with complete certainty, and very few of these responses were er-
rors. These data are reminiscent of those observed in the insight problem-
solving literature (Metcalfe & Wiebe, 1987). However, a stronger evaluation
of the relationship between melody identification and insight problem solving
would require an experimental paradigm that included continuous (rather
than note-by-note) melody presentation and online measures of confidence so
that more precise information about the timing of changes in confidence rat-
ings could be collected.

General Discussion

The current experiment was designed to answer two questions. What
are the musical features that listeners use to identify familiar melodies?
And, how is the physical stimulus compared to its corresponding mental
representation? The implications of the data for each of these major ques-
tions are discussed in turn.

WHAT ARE THE FUNDAMENTAL UNITS FOR MELODY IDENTIFICATION?

Five musical characteristics were significant predictors in at least one of
the regression analyses. Of these, the placement of a note within a musical
phrase was the most consistent predictor and also explained the most vari-
ance (Table 1). As predicted, the data indicated that identification perfor-
mance was highest at phrase boundaries. Because no differences were found
between the beginnings and the ends or phrases, the data were inconsistent
with the claim that phrases represent the smallest identifiable chunk in the
musical hierarchy. However, the data are consistent with the argument that
phrase boundaries facilitate identification because these locations reveal
information about the global structure of the melody (Jones, 1987; Jones
& Boltz, 1989). This hypothesis is also supported by the previously dis-
cussed analysis showing that phrase boundaries tended to encompass sig-
nificantly more pitch and temporal accents than did notes in the middle of
phrases. Thus, it appears that tune identification requires a global under-
standing of melodic structure that is most easily perceived at phrase bound-
aries.

Two contour-based characteristics were also associated with high levels
of identification performance. Notes that completed consecutive alterna-
tions between rising and falling pitch contours were a significant predictor
in half of the regression models; the pairs variable made a small but signifi-
cant contribution to one of the regression models. These results may have
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obtained because these musical ornaments are easily encoded (Restle, 1970).
Another possibility is that these musical ornaments are easily remembered
because they are salient or relatively atypical contour patterns (e.g., D. A.
Smith & Graesser, 1981) that stand out from the surrounding musical con-
text. This hypothesis is supported by the fact that the experimental corpus
included a relatively small proportion of notes that completed alternation
(12.1%) and pair patterns (2.4%).

The last two musical variables that entered the best-fit models were both
temporal in nature. The presence of the duration relative to the beat and
meter variables suggests that identification was most likely to occur at long
notes and metrically accented locations. One explanation for the signifi-
cance of the duration factor is that long notes provide listeners with a tem-
poral pause that allows them to analyze recently heard musical elements.
This hypothesis is tenuous because the method used in the experiment in-
corporated a 10-s response interval after each exposure to the melody; par-
ticipants could have easily used this time to reflect on the music they had
just heard regardless of the length of the last note. A second possibility is
that temporally accented notes are locations where other forms of accent-
ing are likely to occur. There are two reasons to question this hypothesis.
First, this argument implies a correspondence between pitch and temporal
accents, which should have resulted in at least some of the pitch accents
attaining statistical significance; none were significant predictors in any
model. Second, this argument is redundant with one made for the phrase
boundary variable. Given that the phrase boundary variable was a much
more consistent and robust predictor, one would have to conclude that the
significance of the temporal accents indicates that they contribute some-
thing above and beyond coupled accents. This added value may have to do
with the allocation of attention. According to Jones (1987) listeners direct
more attention to relatively long notes. Therefore, as argued in the intro-
duction, relatively long notes may be processed more at perception and
may be more familiar at identification, which helps the listener orient to
the overall musical structure.

More generally, the data are consistent with the idea that melody identi-
fication tasks recruit holistic rather than analytic processing. Of the five
musical characteristics that were significant predictors in at least one re-
gression model, four (phrase placement, alternations, pairs, and meter)
would be classified as holistic in nature. That is, they coded information
about the overall temporal and pitch shape of the melody rather than char-
acteristics of individual notes or intervals. The alternations and pairs fac-
tors were both contour-based characteristics, which previous research has
associated with holistic processing (Peretz & Morais, 1987; Peretz et al.,
1987). The phrase boundary data suggest that musical phrases may be pro-
cessed as unified, coherent entities or gestalts, a phenomenon that has been
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observed in many recognition memory tasks (Deutsch, 1980; Dowling,
1973). The meter of a melody should be considered a holistic property
because it provides the global temporal framework of a piece. The only
analytic property that made a significant contribution to identification per-
formance was duration. The significance of this factor is consistent with
expectancy-based models of music perception (Jones, 1987; Narmour, 1990).
According to these models, one might expect duration to be positively cor-
related with phrase boundaries and metrically accented locations. There-
fore, this result is not surprising given the previously discussed findings.
Further, the significance of this factor indicates that holistic processing does
not occur to the exclusion of analytic processing. Rather, it would seem
that holistic processing is dominant for familiar melody identification.

Although many of the data were consistent with previous work, several
unexpected results merit further consideration. For example, whereas tonal
structure plays a central role in the perception of Western music (Dowling,
1978), neither tonal function variable was a significant predictor in any
model. This result may have obtained because the song corpus included
very few nondiatonic tones (≈1.5%), which would have been the easiest for
the untrained participants to distinguish. To the extent that this corpus is
representative of Western music in the culture, one would conclude that
tonal function does not contribute much to melody identification outside
of the laboratory. However, different results might be obtained if more
complex musical styles (i.e., classical music), or more sophisticated partici-
pants were sampled.

Another surprising result was that temporal factors (metrical accent and
duration relative to the beat) contributed more to melody identification
than did pitch factors (no significant predictors). Previous research seemed
to show that manipulations of the temporal structure of melodies had rela-
tively little effect on identification compared with manipulations of pitch
structure (Hébert & Peretz, 1997; White, 1960; for a different view, see
Schulkind, 1999). These data are difficult to interpret because the tempo-
ral and pitch manipulations in these experiments were not equivalent.
Whereas the pitch manipulations (setting each note to the same pitch) com-
pletely eliminated the pitch pattern, the temporal manipulations (setting
each note to the same duration or applying the rhythmic pattern of one
song to another pitch pattern) left long stretches of the rhythmic pattern
unaltered (Expt. 1: M = 4.6, SD = 2.8; Expt. 2: M = 2.8, SD = 1.1). Thus,
these experiments overestimated the importance of pitch information rela-
tive to temporal information, a conclusion that was borne out by the cur-
rent data. However, it should be noted that even the temporal factors con-
tributed relatively little to melody identification when compared with factors
that were not strictly tied to either pitch or rhythm.

Finally, the relative importance of contour information at the expense of
interval information is surprising given that past research has shown that
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listeners are more likely to rely on interval information with familiar melo-
dies and long retention intervals (Dowling & Bartlett, 1981; Edworthy,
1982, 1985). This discrepancy is probably related to the use of different
operational definitions of familiarity and retention interval. In previous
work, “familiar” melodies were novel before the experiment, but had been
repeated between 5 and 15 times during the experimental session. As well,
the retention interval was on the order of minutes. The stimuli in the cur-
rent experiment had been encountered many more times and over much
longer retention intervals. As well, previous work employed a recognition
paradigm rather than an identification paradigm.

In sum, the fundamental units for melody identification appear to be
contour-based, holistic properties that stretch across several notes up to
and including phrases. The reliance on holistic rather than analytic pro-
cessing has important implications for the way musical knowledge is repre-
sented in memory. Specifically, these data suggest that melody identifica-
tion is a procedural memory skill because musical knowledge does not
appear to be compositional (N. J. Cohen & Eichenbaum, 1993); that is,
melodies are not built up from their constituent components (individual
notes). One might also look to the previously discussed “all-or-none” na-
ture of melody identification as support for this claim. Given that different
brain systems are believed to process procedural and declarative informa-
tion (N. J. Cohen & Eichenbaum, 1993), these data might influence how
neuroscientists search for the neural substrates associated with musical
behavior (Peretz & Kolinsky, 1994; Peretz et al., 1994).

The holistic processing bias is also important because it can explain one
puzzling aspect of the current data. Several musical features that are easily
perceived by relatively untrained listeners—for example, tonal function
(Dowling, 1978) and melodic contour (Dyson & Watkins, 1984; Jones &
Ralston, 1991)—failed to emerge as significant predictors of melody iden-
tification. This result may reflect the fact that standard music perception
paradigms require the listener to detect manipulations of single notes. As
such, these paradigms orient the listener to individual notes, which differs
from the way the participants approached the melodies in the current ex-
periment. Other aspects of the design may also have contributed to the
observed differences between identification and perception. Whereas the
music perception literature often uses forced-choice recognition (old/new)
of novel melodies over relatively short retention intervals, the current ex-
periment involved retrieving the title of a well-known melody over a rela-
tively long retention interval. Previous research has shown that manipula-
tions of both retention interval (Dowling & Bartlett, 1981; Edworthy, 1982,
1985) and stimulus familiarity (J. D. Smith et al., 1994) influence perfor-
mance on music cognition tasks. In any case, the current data suggest that
future work in music perception should assess the effects of phrase-level
manipulations (see Tillman & Bigand, 1998, for an example of this ap-
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proach). In fact, phrase-level manipulations may do a better job of captur-
ing how music is perceived outside of the laboratory.

HOW IS THE PHYSICAL STIMULUS RECONCILED WITH ITS CORRESPONDING

MENTAL REPRESENTATION?

Although the most consistent predictor of identification performance
was serial position, it would be foolish to argue that there is a direct causal
relationship between serial position and identification. However, the rela-
tionship between identification and serial position is important for under-
standing how the physical stimulus is matched to its mental representation.
First, plotting serial position by identification performance reveals that the
majority of melody identifications (77.3%) occurred by SP 7 (Figure 2).
This indicates that people are able to identify well-known melodies based
on relatively brief exposures. Second, the pattern of identification perfor-
mance across serial positions traced an inverted U-shape. In fact, beyond
some point, additional information was less effective than that which pre-
ceded it. One could argue that this pattern was related to differences in the
ability of the participants rather than characteristics of the music and/or
the attempt to identify the melody. However, this alternative explanation
was excluded because the regression analyses that separated the more and
less proficient participants produced results that were quite similar to those
of the main analyses.

The inverted U-shaped function strengthens the proposed parallel be-
tween melody and spoken word identification (Marslen-Wilson & Tyler,
1980; Marslen-Wilson & Welsh, 1978). To review, the cohort theory ar-
gues of spoken word identification argues relies on temporally ordered,
bottom-up processing and claims that a word is identified when the physi-
cal input reaches a point that distinguishes it from all other words in the
lexicon (Warren & Marslen-Wilson, 1987, 1988). Identification is unlikely
to occur before this divergence point, and information that follows the
divergence point should be relatively inconsequential. The data from the
current experiment conform to these predictions. Performance was rela-
tively low at early SPs, presumably because there was not enough informa-
tion to distinguish the target melody from other melodies stored in memory.
On average, the divergence point for melodies appears to occur between SP
5 and SP 7; this is the region in which identification peaked. The partici-
pants who failed to identify the song at this point did so because of noise in
the system or a failure to correctly perceive the early segments of the melody.
Consequently, information following the divergence point proved to be of
little value as performance dropped and remained low across SPs 8–12.
This interpretation implies that early segments of the melody are crucial
for identification (Schulkind, 2003).
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The current data also lead to several other suggestions for future re-
search in the field. For example, the current data always assessed identifi-
cation starting from the first note in the melody, an approach echoed in
research on word identification (Marslen-Wilson, 1987). Different results
might be obtained if participants were given notes from different places
within the melody. It is also possible that the nature of the stimuli or the
musical ability of the participants influenced the results reported here. The
use of trained musicians and/or more complex musical forms (e.g., jazz,
classical, and even non-Western styles) would provide additional tests for
the generality of the current findings. A third important direction to take
the current experiment would be to construct novel melodies to provide
direct tests of the variables identified as significant predictors. Compari-
sons of the models for well-known versus novel melodies would have im-
portant implications for psychomusicology as discrepancies between dif-
ferent kinds of melodies may provide insight into what makes a melody
“good” enough to become a cultural standard (Bartlett, 1993; Bartlett &
Dowling, 1988).

In closing, one general methodological issue must be addressed. Although
the regression analyses explained a substantial proportion of the variabil-
ity in identification performance, a critical reader might argue that this
leaves more than half the variability in melody identification unexplained.
However, several factors—that could not be controlled or measured—lim-
ited the predictability of the data. For example, we had no control over
exposure, recent listening experiences, or availability, in general. In addi-
tion, one would expect melody identification to be a function of both the
properties of the melody (which we measured) and the relationship of these
properties to those of all other songs the participant knows; a complete
assessment of each participant’s knowledge base would not be feasible.
This strategy would also require making decisions regarding which prop-
erties of the participants’ knowledge base were relevant; this was the ex-
press purpose of the current experiment. As well, the participants may
have begun to form expectations about the identity of future stimuli based
on what they had heard. Finally, there are many strategies and processes in
the recognition of sequentially presented stimuli that could interact with
the process of recognition (see Schulkind, 2000, 2002). Some of these is-
sues might be addressed in future work using experimentally constructed,
novel melodies that would limit the number of stimuli and/or stimulus
properties to be considered. We view the current work as a prelude to such
research, as a means to guide the selection of research questions in future
work. More generally, we acknowledge that the approach taken in the
current research may have influenced the results. Whereas we were more
interested in the behavior of relatively unsophisticated musicians identify-
ing popular songs, most research in the field tends to be skewed toward
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more trained listeners and novel, experimental materials. As was acknowl-
edged throughout the discussion, this orientation might explain some
of the discrepancies between our data and previous work in the field.2
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Appendix

The 34 target songs were: “Amazing Grace,” “America, the Beautiful,” “(Oh my Dar-
ling,) Clementine,” “Dixie,” “Do-Re-Mi (Do a Deer),” “Frère Jacques,” “Frosty, the
Snowman,” “Happy Birthday to You,” “Home on the Range,” “(If You’re Happy and You
Know it) Clap Your Hands,” “Itsy-Bitsy Spider,” “I’ve Been Working on the Railroad,”
“Joy to the World,” “Lean on Me,” “London Bridge is Falling Down,” “Mary Had a Little
Lamb,” “National Anthem,” “On Top of Old Smokey,” “Pop Goes the Weasel,” “Puff, the
Magic Dragon,” “Rock-A-Bye Baby,” “Row, Row, Row Your Boat,” “Rudolph, the Red-
Nosed Reindeer,” “Santa Claus is Coming to Town,” “Silent Night,” “Singin’ in the Rain,”
“Take Me Out to the Ballgame,” “This Old Man,” “Three Blind Mice,” “Tomorrow,”
“Twinkle, Twinkle Little Star,” “When You Wish Upon a Star,” “Yankee Doodle Dandee,”
and “Yesterday.”




