
A Fast, Randomised, Maximal Subset Matching Algorithm
for Document-Level Music Retrieval

Raphaël Clifford
University of Bristol, Merchant Venturers’ Building

Woodland Road, Bristol BS8 1UB, UK
clifford@compsci.bristol.ac.uk

Manolis Christodoulakis
King’s College, London

The Strand, London WC2R 2LS, UK
manolis@dcs.kcl.ac.uk

Tim Crawford, David Meredith, Geraint Wiggins
Goldsmiths College, University of London

New Cross, London SE14 6NW, UK
{t.crawford,d.meredith,g.wiggins }@gold.ac.uk

Abstract
We presentMSM , a new maximal subset matching algo-
rithm, for MIR at score level with polyphonic texts and pat-
terns. First, we argue that the problemMSM and its an-
cestors, the SIA family of algorithms, solve is 3SUM-hard
and, therefore, subquadratic solutions must involve approx-
imation. MSM is such a solution; we describe it, and argue
that, atO(n log n) time with no large constants, it is orders
of magnitude more time-efficient than its closest competi-
tor. We also evaluateMSM ’s performance on a retrieval
problem addressed by the OMRAS project, and show that it
outperforms OMRAS on this task by a considerable margin.

Keywords: Pattern matching, point set representation.

1. Introduction
1.1. Overview
We presentMSM , a new fast, randomised maximal subset
matching algorithm which is applicable to MIR at the level
of (quantised) score encodings. This is a useful level of rep-
resentation because there is a vast amount of music stored in
this form (though not yet digitally), and because such “mid-
level” representations constitute a helpful abstraction in un-
derstanding perceived musical structure (Bello and Pick-
ens, 2005), and arise as output from, for example, MIDI
recorders and transcription systems. We currently focus on
idealised representations containing only restricted forms of
noise; we will generalise this later.

Our algorithm finds the largest subset of a pattern appear-
ing in a text at an arbitrary offset in any of the dimensions
represented. In our representation, this means transposition
invariant and time offset tolerant matching.

The rest of this section explains why point-set represen-
tations are better for note-level MIR than string-based ones.
Section 2 summarises related work in point-set matching
and relevant aspects of the OMRAS project, against which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

we evaluate our results. Section 3 presents first a proof that
the problem we solve is 3SUM-hard, and so is unlikely to
have an exact solution better thanO(n2) in time, and then
a randomised, approximateO(n log n) time solution. Sec-
tion 4 presents comparisons, with a baseline of the OMRAS
matching method, and Ukkonen et al.’s (2003) P3, applied
to query-by-example (i.e., large queries). Section 5 con-
cludes and suggests future work.

1.2. Point-set matching in music
Most approaches to music pattern matching proposed to
date presuppose that the music is represented as a string of
symbols or a set of such strings. Typically, each voice is rep-
resented as a string and each symbol within each string rep-
resents either a note or an interval between two consecutive
notes in a voice. Usually, the similarity between two pat-
terns is measured byedit distance, calculated using dynamic
programming (Bellman, 1957). Authors using this approach
include Crawford et al. (1998), Lemström (2000), Guo and
Siegelmann (2004) and Cambouropoulos et al. (2005).

Figure 1: Pattern B is perceived as an elaboration of pattern
A, but the musical edit distance between them is 9, which is
large, being more than twice the number of notes in A.

However, there are several problems with this approach.
Consider the patterns, A and B, in Figure 1. B is clearly
perceived to be an embellished version of A. So we would
want a musical pattern matching algorithm to identify these
two patterns as versions of the same motif. However, if the
two patterns in Figure 1 are represented as strings in which
each symbol is a note, then the edit distance between them is
9 because 9 notes need to be inserted into A to get B. Since
A only contains 4 notes, an edit distance of 9 is large. But if
we allow A to match with patterns that differ from it by an
edit distance of 9, we obtain many spurious matches.

Another problem with string-based approaches to musi-
cal pattern matching arises when we search in polyphonic
music. Specifically, if we do not know the voice to which



each note belongs or if we are interested in patterns con-
taining notes from two or more voices, then the number
of passage-length strings required to represent the passage
fully is exponential in the number of distinct onsets; if we
don’t searchall of these strings, we risk missing occurrences
of the query. This is illustrated in Figure 2, which shows a
graph of pitch against time representing the beginning of
Frère Jacques. Each point in the figure represents a note

P
it
c
h

Time

?

?

?

?

?

?

?

?

?

?

?

?

?

? ?

?

?

?

?

?

?

?

?

?

?

1st part entry 3rd part entry2nd part entry

?

?

?

?

?

?

?

?

?

Figure 2: Fully representing a passage of unvoiced poly-
phonic music produces a combinatorial explosion.

and all pairs of notes that could be consecutive within a sin-
gle string are linked by an arrow. The number of strings
required is multiplied byk each time a note is followed by
k notes that start simultaneously.

These problems are avoidable by representing the mu-
sic geometrically, as a set of points (or line segments) in
a multi-dimensional Euclidean space. A two-dimensional
representation has been used, in which one dimension rep-
resents time and the other pitch. We follow this approach.

2. Background
2.1. Point-set pattern matching in music
We now review basic concepts of the geometrical approach
and existing work on point-set pattern matching in music.

Let v be a vector andp a point in ak-dimensional Eu-
clidean space. Thenp + v denotes the point that results
whenp is translated byv. Similarly, letP be a set of points
andv be a vector in ak-dimensional Euclidean space. Then
P +v denotes the point set that results when all points inP
are translated byv. That is,P + v = {(p + v) | p ∈ P}.
Let P and T be k-dimensional point sets andv be ak-
dimensional vector. ThenP is translatable inT by v iff
P ⊆ T andP +v ⊆ T . Two point sets,P andQ, aretrans-
lationally equivalentiff there exists a vector,v, such that
P + v = Q. P is the maximal translatable pattern (MTP)
in T for the vector,v, iff P is the largest point set that is
translatable inT by v. In other words, the MTP inT for a
vectorv is {p | (p ∈ T ) ∧ ((p + v) ∈ T )}.

The maximal matchfor a pattern point set,P , in a text
point set,T , for a vector,v, is the ordered pair,〈v, S〉, such
thatS contains all the points inP that can be translated by
the vectorv to give points inT . That is, the maximal match
for a query set,P , in a text set,T , for a vector,v, is 〈v, S〉
such thatS = {p | (p ∈ P ) ∧ ((p + v) ∈ T )}.

Meredith et al. (2002a) present SIA, an algorithm that
finds all non-empty MTPs in ak-dimensional point set of
size n in O(kn2 log2 n) time andO(kn2) space. Wig-
gins et al. (2002) generalise SIA to a general pattern

matching algorithm, SIA(M), which finds all maximal
matches of ak-dimensional pattern point set,P , of size
m, in a k-dimensional text point set,T , of size n, in
O(knm log2 n) time andO(knm) space. They implement
version SIA(M)Ex, which finds all thecompleteoccurrences
of a pattern point set of sizem in a text point set of sizen in
O(knm) time, and version SIA(M)E which finds all com-
pleteand partialmatches inO(knm log(nm)) time.

The problem of finding the largest subset ofP which
occurs in the data set under translation has also been stud-
ied. A näıve O(nm log n) algorithm takes the differences
between each point in the pattern and each in the data set,
and sorts them (Wiggins et al., 2002); the algorithm can be
reduced straightforwardly toO(nm) time, by using hashed
storage, but the bottleneck of space usage remains (Mered-
ith et al., 2002b). By observing that the differences from
any given point in the pattern are already in sorted order, the
working space overhead was reduced toO(m) by Ukkonen
et al. (2003). Although the time complexity of this approach
is O(nm log m) it is the only practical method for solving
large problems of which we are aware. Lubiw and Tanur
(2004) also consider the matching problem in sets of hori-
zontal line segments. They use weight functions to measure
the quality of a match rather than, e.g., the degree of over-
lap between line segments in pattern and text as in Ukko-
nen et al.’s (2003) problem P3. For example, Lubiw and
Tanur’s (2004) technique allows for a consonant interval be-
tween a pattern note and a text note to be matched more
strongly than a dissonant one. They give an algorithm which
runs inO(nm log m) time (n andm as before) and show
that the problem is 3SUM-hard and so unlikely to have a
subquadratic solution.

Other important related contributions are by Clausen and
Kurth (2002), who present a general framework and imple-
mentations for searching for patterns in polyphonic sym-
bolic and audio music data, and Typke et al. (2004), whose
method searches for a polyphonic pattern in a database of
polyphonic music represented in the form of weighted point
sets, similarity between which is measured in terms of trans-
portation distances such as the Earth Mover’s Distance.

2.2. OMRAS
The OMRAS project (http://www.omras.org ) designed
a polyphonic MIR method (Pickens et al., 2003) to capture
the general harmonic similarity between a musical query
and musical documents sought in a collection. The simplest,
0th-order OMRAS model is built by estimating the relative
strength of the members of a lexicon of chords, given the
observable notes in a window traversing the music, and by
consolidating the set of these partial observations (one for
each window position) into an overall harmonic signature
for the piece, which, like each of the partial observations, is
a probability distribution over the lexical chords rather than
a single value. This process is applied to all the files in the
collection to be searched and the signature of each file is
stored. Then, at search time, the signature of the query is
computed along with a measure of the divergence between



the query and each file in the database. A list of file names
is then returned with the files ranked by decreasing order of
divergence from the query.

The chord-lexicon used in most of the OMRAS work is
the 24 major and minor triads. To admit approximate match-
ing between harmonic descriptions, it was necessary to rep-
resent the harmonic unfolding of the music so that notes in a
query different from those in the original document lend ap-
propriate weight to a matching function according to their
harmonic distance from it. There is no music-theoretical
way to judge the distance between all possible chords aris-
ing in the course of a piece of music, but there is such a
measure for the set of 24 triads: Krumhansl and Shepard
(1979) present the relative positions of the triads in a four-
dimensional space derived from rigorous empirical percep-
tual studies. The Euclidean distance between the triads in
this space forms the basis for constructing the model.

As well as this simple harmonic model, OMRAS uses
higher-order models to capture not just the local harmonic
description of each window on the music, but also the har-
monic transitions between windows. The model grows ex-
ponentially with order, which severely curtails efficiency,
though it adds considerable richness to the model.

The OMRAS results reported in this paper use a param-
eter set that has been found to perform robustly: the data is
gathered from MIDI files using a window of size 4 events
and the OMRAS models are of the second order. We em-
phasise that this method essentially performs approximate
matching for document-level retrieval, and was principally
designed as a step towards bridging the gap between audio
and symbolic representations of music (Bello and Pickens,
2005).

3. MSM
We now show that the problem of finding the largest sub-
set match is3SUM-hard. A problem is 3SUM-hard if it is
at least as hard as the problem of determining if any three
integers in a set sum to0 (Gajentaan and Overmars, 1995,
whose notation we use). A quadratic time lower bound is
conjectured for the time complexity of this class of prob-
lems if exact solutions are required. We then present a ran-
domised algorithm which takesO(n log n) time and so is
able to beat the conjectured bound by giving approximately
correct answers with high probability.

3.1. Largest subset match is 3SUM-hard
For two problems PR1 and PR2,PR1 ≪f(n) PR2 means
that any instance of PR1 can be solved using a constant num-
ber of instances of PR2 plusO(f(n)) time. A problem PR
is 3SUM-hard if3SUM ≪f(n) PR wheref(n) ∈ o(n2).
Our proof is by reduction from EQDIST, a known3SUM-
hard problem (Barequet and Har-Peled, 2001).

Problem 1. EQDIST (EQUAL DISTANCE) 1 : Given two
setsA and B of n and m = O(n) integers, respectively,

1 This problem definition has been adapted from the work of Barequet
and Har-Peled (2001), since the original considered real values.

is there a paira1, a2 ∈ A and a pairb1, b2 ∈ B such that
a1 − a2 = b1 − b2?

Problem 2. MAX SUBSET (MAXIMUM SUBSET MATCH):
Consider two setsP andQ of m andn = O(m) integers
and an integer boundd. Consider also the largest subsets
P ′ ⊆ P and Q′ ⊆ Q such that for some vectorv, P ′ +
v = Q′. TheMAX SUBSETproblem is to determine whether
|P ′| ≥ d.

Theorem 1. EQDIST≪f(n)MAX SUBSET

Proof. Let (A,B) be an instance of EQDIST. We claim that
(A,B) is also an instance of MAX SUBSET with the bound
d = 2. Assume there is a solution to EQDIST. Therefore,
there exista1, a2 ∈ A andb1, b2 ∈ B such thata1 − a2 =
b1 − b2. Let v = b1 − a1, so now we havev + a1 = b1 and
v + a2 = b2 and therefore the maximum subset match ofA
andB is at least2.

Now assume there is a solution to MAX SUBSET. It fol-
lows that there exists a vectorv such that for two subsets
A′ ⊆ A andB′ ⊆ B, A′ + v = B′ and|A′| ≥ 2. There-
fore, there exist two pointsa1, a2 ∈ A′ and two points
b1, b2 ∈ B′ so thata1 + v = b1 anda2 + v = b2. Therefore
b1 − b2 = a1 − a2 as required.

EQDIST is known to be3SUM-hard (Barequet and Har-
Peled, 2001) and so it follows immediately that MAX SUB-
SET is also3SUM-hard.

3.2. How to overcome the complexity limit
We now introduce anO(n log n) time randomised algorithm
that calculates approximately the largest subset match. The
idea is to reduce the problem of point set matching inn di-
mensions tobinary wildcard matchingin 1 dimension.

Definition 1. Givenk-dimensional point setsP andT , the
subset matchingproblem is to find the largest subset ofP
which is a subset match inT .

Further, we define the hash functionsg(x) = ax mod q,
h(x) = g(x) mod s andh2(x) = (g(x) + q) mod s for
some preselected values ofa, q ands.

The first two steps ‘project and reduce length’ (Cardoze
and Schulman, 1998; Cole and Hariharan, 2002):

1. Random Projection in 1DTo projectP andT to one
dimension, pickd integersbi uniformly at random from a
large space. For each point,x in P ∪ T calculate

∑
bixi,

wherexi is theith coordinate ofx. Call the resulting sets of
points in one dimension,P ′ andT ′ (Fig. 3(b)).

2. Length Reduction (by hashing)Use universal hashing
to reduce the sparsity of the data. Chooseq to be a random
prime in [2N, . . . , 4N ], whereN is the maximum of the
projected values ofP andT ; a uniformly from[1, . . . , q−1];
ands to bekn, wherek > 1 is a constant. Each non-zero
location inP ′ is mapped to positionh(P ′

i ). Each non-zero
location inT ′ is mapped to four positions:h(T ′

j), h(T ′
j)+s,

h2(T ′
j) andh2(T ′

j) + s. Call the resultant arrays of lengths



and2s resp., p andt (Fig. 3(c)). The values at the mapped
positions inp andt are all set to1.

3. Binary Wildcard Matching (using FFTs) Set any unde-
fined position inp to ‘wildcard’. Set any undefined position
in t to 0. Perform binary wildcard matching onp andt. The
result is the number of1s thatp andt have in common at
each alignment position.

Lemma 1 justifies using these hash functions for match-
ing. Its significance is that if some subset of the patternP ′

matches in the text so thatP ′
i + c = T ′

j for somec then
h(P ′

i ) + h(c) matches one ofh(T ′
j), h(T ′

j) + s, h2(T ′
j) and

h2(T ′
j) + s.

Lemma 1.

h(x) + h(y) =



h(x + y) if g(x) + g(y) < q and

h(x) + h(y) < s,

h(x + y) + s if g(x) + g(y) < q and

h(x) + h(y) ≥ s,

h2(x + y) if g(x) + g(y) ≥ q and

h(x) + h(y) < s

h2(x + y) + s otherwise.

Proof. It is easy to show thath(x)+h(y) = h(x+y) when
g(x) + g(y) < q andh(x) + h(y) < s. Now consider the
second case,g(x) + g(y) < q andh(x) + h(y) ≥ s. Then

h(x) + h(y) = g(x) mod s + g(y) mod s

= (g(x) + g(y)) mod s + s

= (ax mod q + ay mod q) mod s + s

= (a(x + y) mod q) mod s + s

= h(x + y) + s.

We can follow similar steps to prove the other cases.

60

67

70

1 2

pi
tc

h

onset time

1

2

3

4

(a) 2D (b ) Random Projection to 1D

1
8
2

2
0
3

21
2

2
0
5

1 2 43

(1,60)=1 .2+60 .3=182

(1,67)=1 .2+67 .3=203

(1,70)=1 .2+70 .3=212

(2,67)=2 .2+67 .3=205

b1=2 , b2=3

( , )= . + .x x x b x b1 2 1 1 2 2
1

2

3

4

N =212,

(200*182 mod 431) mod 16= 4

(200*203 mod 431) mod 16= 6

1

2

(200*212 mod 431) mod 16= 2

(200*205 mod 431) mod 16= 7

3

4

(c) Length Reduction (by hashing)

1

1 2 43

2 3 4 5 6 7 8

q     [424, 848] =  431 (prime), a     [1, 430] = 200, s = kn = 8 2 = 16.

Figure 3: Illustration of the main steps of the procedure
Now we estimate the size of the subset matches. At

each alignment ofp and t we estimate the number of true
matches in the original data. By making some simple as-
sumptions, we derive an unbiased estimate of the number of

true matches at a given offset. However, this estimate may
have unacceptably large variance, so we make a further ob-
servation, giving us a biased estimate which is much more
accurate in practice, for the type of musical data we analyse.

Our improvement works because we can, with some ef-
fort, find at which offset in the original2-dimensional data
the best match in the hashed and length reduced data ap-
pears. Having found it, we count the true number of matches
at that point, thus entirely removing one source of error.
The initial, possibly inaccurate, estimate of the number of
matches at a given offset is not reported; only the order of
the estimates is used. To achieve a perfect ranking of the
documents we now only require that the initial estimates be
monotonic in the true number of matches. Indeed, we need
even less than this as only the largest subset match is con-
sidered for any given pair of pieces.

The relative probability of introducing false positives
during the dimension reduction phase is small enough to use
P ′ andT ′ as the original data from here on. We can add a
further stage of lookup to find the true original points inP
andT if need be. The outline algorithm runs thus:

1. Find the offset giving the best match ofp andt and call it
h(c) (c is the currently unknown offset inP ′ andT ′).

2. Find which points inp matcht at offseth(c) (O(m) time).

3. Look up where the points that match in the hashed pat-
tern,p were mapped from. We must have stored a reverse
map frompi to P ′

i when doing the original hashing.

4. We want to avoid calculatingh(c) for all c. We know
P ′

i for each matchpi, and thattj = h(P ′
i + c); so we can

look up T ′
j in another reverse lookup table. Note that the

four images (Lemma 1) created by hashingT ′ are distinct.
Now we havec = T ′

j −P ′
i for each pair of points that match

in the hashed strings at a particular offset. If there are no
collisions in the hashing step ofP ′ and T ′ then we have
solved the problem.

5. However, collisions are possible, so look at allpj and
make an array of candidate offsetsc. Choose the offset that
occurs most frequently as the estimate of the true offset.

The running time is dominated by the time taken to do
the binary wildcard matching ofp andt, which are both of
lengths ∈ O(n). So the total running time isO(n log n).

4. Results and Evaluation
4.1. Evaluation Method
We comparedMSM with the OMRAS system on a
document-level retrieval task. OMRAS uses an approxi-
mate matching method, designed to work with noisy data
(in both pitch and time dimensions), whereasMSM is an
exact-matching method suitable for score-like representa-
tions; therefore the comparison is not exact, but we believe
it convincingly shows the validity of our new approach.

To compare the two systems, we ran them on a test set
of 2338 documents, of which 480 were used as queries.
Each query was defined prior to the experiment to be rel-
evant to 39 other queries (and itself), thus partitioning the



480 queries into 12 sets of 40 mutually relevant documents.
Each of these sets was generated by artificially corrupting
one of Bach’s four-part chorale harmonizations by (1) in-
serting 10, 20, 30, 40 or 50% extra notes at random into
the chorale (5 documents); (2) inserting 10, 20, 30, 40 or
50% extra notes so that each inserted note was a perfect fifth
away from one of the notes in the original (5 documents); (3)
transposing 10, 20, 30, 40 or 50% of the notes by a random
interval smaller than an octave (5 documents); (4) transpos-
ing 10, 20, 30, 40 or 50% of the notes by a perfect fifth or
a perfect fourth (5 documents); (5) deleting 10, 20, 30, 40
or 50% of the notes (5 documents); and (6) removing some
combination of voices (15 documents).

Apart from these artificially corrupted documents, which
test robustness, all the other documents in the database were
derived automatically from the Musedata score encodings
(Hewlett, 1997)2 . The documents were normalised with
respect to tactus; they were generated from score encodings,
so they contained no expressive timing.

MSM and OMRAS were used to compute the similar-
ity between each query document and each database docu-
ment. The documents were then ranked by decreasing order
of similarity to the query. The rankings of the relevant doc-
uments for each query were then combined together to pro-
duce an 11-point precision-recall curve for each algorithm.

In this task, the relevant documents for each query were
corrupted versions of the query, as above. This models a
real-world retrieval task of seeking possibly degraded ver-
sions of a symbolic query in a database of symbolic mu-
sic encodings (i.e., scores). The noise introduced into the
relevant documents here is typical of the pitch noise that
might be found in MIDI files derived from audio recordings
or performed input. However, timing information was not
distorted at all, so robustness in this respect was not tested.

4.2. Test Results

Figure 4 shows the results of the tests with noisy queries,
two tests per graph, comparingMSM results and OMRAS
results for each test; in 4(a) and 4(b), theMSM results for
each pair of tasks are almost identical. The overall results of
the tests are shown in Figure 5.MSM consistently outper-
forms OMRAS on these tasks by a considerable margin.

4.3. Execution speed of MSM

Figure 6 shows the execution times (y-axis) of Ukkonen
et al.’s (2003) P3 algorithm and MSM, applied to prefixes
of various sizes (x-axis) of Beethoven’s 3rd Symphony, each
prefix being compared with itself; this finds the maximal re-
peated subset of the prefix.MSM ’s subquadratic behaviour
is clearly visible, and the timings show that no large con-
stants are hidden in our estimates. Further, they show that
MSM is faster by between one and two orders of magnitude,
improving with data size—the graph is plotted on log scale
to allow the comparison to fit on the page. The code was in
C++, compiled under g++ 3.4 on an AMD 3000+ machine

2 http://www.musedata.org ; thanks to CCARH for their use.

(a)

11-pt Precision-Recall curve for Tasks 1 & 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re

c
is

io
n

Task 1, OMRAS Task 1, MSM Task 2, OMRAS Task 2, MSM

(b)

11-pt Precision-Recall graph for Tasks 3 & 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re

c
is

io
n

Test 3, OMRAS Test 3, MSM Test 4, OMRAS Test 4, MSM

(c)

11-pt Precision-Recall Curve for Tasks 5 & 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re

c
is

io
n

Test 5, OMRAS Test 5, MSM Test 6, OMRAS Test 6, MSM

Figure 4: Precision/Recall graphs for the noisy queries; in
(a) and (b),MSM results for each pair are almost identical.

Overall 11-pt Precision-Recall Curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re

c
is

io
n

OMRAS MSM

Figure 5: Overall precision/recall graph for all tests.

using the fast Fourier libraryfftw 3.1.1 (Frigo and Johnson,
2005). No attempt at optimisation was made.



Comparison between Ukkonen et al (2003) and MSM

23.38

42.62

0.07

0.14
0.19

72.44

2.01

9.77

0.31

0.04

0.01

0.1

1

10

100

5000 10000 15000 20000 25000

Number of notes

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
; 

lo
g

 s
c
a

le
)

Ukkonen et al (2003) MSM

Figure 6: P3vs. MSM log-scale CPU time used to detect
maximal structure repetition in Beethoven’s 3rd Symphony.

4.4. Discussion
MSM is much faster than SIA(M)E, particularly for large
queries; the method is practicable where SIA(M)E was gen-
erally not. It outperforms Ukkonen et al.’s (2003) P3 al-
gorithm, without loss in accuracy, though we note that this
algorithm was intended for small queries. On well-behaved
score data, its precision/recall results approach perfection,
though we concede that this is a specialist task in which
small-scale noise is not an issue, which is not usually the
case in real-world data. In this special case,MSM signifi-
cantly outperforms OMRAS.

5. Conclusions and Future Work
We believe the new method is promising, but there is more
to do, in rendering the method robust to the kind of noise
that is encountered in real-world music data. The technique
is also applicable to line segment representations of music;
this requires further empirical work. Most important, this
algorithm is fast enough to admit non-indexed searching of
large score databases for the first time.

References
G. Barequet and S. Har-Peled. Polygon containment and transla-

tional min-hausdorff-distance between segment sets are 3sum-
hard. Int. J. Comput. Geometry Appl., 11(4):465–474, 2001.

R. Bellman. Dynamic Programming. Princeton University Press,
1957.

J. P. Bello and J. Pickens. A robust mid-level representation for
harmonic content in music signals. InProceedings of the 7th
International Conference on Music Information Retrieval, IS-
MIR 2005. Queen Mary College, University of London, 2005.

E. Cambouropoulos, M. Crochemore, C. Iliopoulos, M. Mohamed,
and M.-F. Sagot. A pattern extraction algorithm for abstract
melodic representations that allow partial overlapping of inter-
vallic categories. InProceedings of the Sixth International Con-
ference on Music Information Retrieval (ISMIR 2005, 11–15
September 2005, London), 2005.

D. E. Cardoze and L. J. Schulman. Pattern matching for spatial
point sets. InIEEE Symposium on Foundations of Computer
Science, pages 156–165, 1998.

M. Clausen and F. Kurth. A unified approach to content based and
fault tolerant music identification. InInternational Conference
on Web Delivering of Music, Darmstadt, Germany, 2002.

R. Cole and R. Hariharan. Verifying candidate matches in sparse
and wildcard matching. InProceedings of the Annual ACM
Symposium on Theory of Computing, pages 592–601, 2002.

T. Crawford, C. S. Iliopoulos, and R. Raman. String matching tech-
niques for musical similarity and melodic recognition.Comput-
ing in Musicology, 11:73–100, 1998.

M. Frigo and S. G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. spe-
cial issue on ”Program Generation, Optimization, and Platform
Adaptation”.

A. Gajentaan and M. H. Overmars. On a class ofo(n2) problems in
computational geometry.Computational Geometry, 5:165–185,
1995.

A. Guo and H. Siegelmann. Time-warped longest common sub-
sequence algorithm for music retrieval. InProceedings of the
Fifth International Conference on Music Information Retrieval
(ISMIR 2004, 10–15 October 2004, Barcelona), 2004.

W. B. Hewlett. MuseData: Multipurpose representation. In
E. Selfridge-Field, editor,Beyond MIDI: The Handbook of Mu-
sical Codes, pages 402–447. MIT Press, Cambridge, MA.,
1997.

C. L. Krumhansl and R. N. Shepard. Quantification of the hierar-
chy of tonal functions within a diatonic context.Journal of Ex-
perimental Psychology: Human Perception and Performance,
5:579–594, 1979.

K. Lemstr̈om. String Matching Techniques for Music Retrieval.
PhD thesis, University of Helsinki, Faculty of Science, Depart-
ment of Computer Science, 2000. Report A-2000-4.

A. Lubiw and L. Tanur. Pattern matching in polyphonic music
as a weighted geometric translation problem. InFifth Interna-
tional Conference on Music Information Retrieval, Barcelona
(ISMIR 2004, 10–15 October 2004), 2004.

D. Meredith, K. Lemstr̈om, and G. A. Wiggins. Algorithms for dis-
covering repeated patterns in multidimensional representations
of polyphonic music.Journal of New Music Research, 31(4):
321–345, 2002a.

D. Meredith, G. A. Wiggins, and K. Lemström. Method of
pattern discovery, 2002b. PCT patent application number
PCT/GB02/02430, UK patent application number 0211914.7.
Applied for by City University, London and filed on 23 May
2002. (Priority date: 23 May 2001, draft available online at
http://www.titanmusic.com/papers.html ).

J. Pickens, J. P. Bello, G. Monti, T. Crawford, M. Dovey, M. San-
dler, and D. Byrd. Polyphonic score retrieval using polyphonic
audio queries: A harmonic modeling approach.Journal of New
Music Research, 32(2):223–226, 2003.

R. Typke, R. C. Veltkamp, and F. Wiering. Searching notated poly-
phonic music using transportation distances. InProceedings
of the ACM Multimedia Conference (New York, October 2004),
pages 128–135, 2004.

E. Ukkonen, K. Lemstr̈om, and V. M̈akinen. Geometric algo-
rithms for transposition invariant content-based music retrieval.
In Proceedings of the Fourth International Conference on Music
Information Retrieval, Baltimore (ISMIR 2003, 26–30 October
2003), 2003.

G. A. Wiggins, K. Lemstr̈om, and D. Meredith. SIA(M)ESE: An
algorithm for transposition invariant, polyphonic, content-based
music retrieval. In3rd International Symposium on Music Infor-
mation Retrieval (ISMIR 2002), 13–17 September 2002, pages
283–284, IRCAM, Centre Pompidou, Paris, France., 2002.


