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Abstract

We present a new algorithm, SIA, which discovers
maximal repeated patterns in any set of points in Carte-
sian spaces of any dimensionality. The worst-case running
time of SIA is ����� ���� �� for a �-dimensional dataset
of size �.

SIATEC is an extension of SIA that generates a set
of translational equivalence classes (TECs). If the input
represents a musical score then each TEC contains all the
transposition-invariantoccurrences of a single maximal re-
peated pattern in the score. In the worst case, SIATEC
takes time ������ to compute the TEC of every maximal
pattern computed by SIA.

We have also experimented with a set of heuristics,
MU, that takes as input a dataset representing a musi-
cal surface together with the set of TECs generated by
SIATEC for this dataset. MU computes a value for each
TEC that is intended to represent the “musical signifi-
cance” of the TEC. It then presents the TECs ordered ac-
cording to this value.

The combined system of MU and SIATEC (which we
call MUSIATEC) has been used to analyse some large-
scale polyphonic works with very encouraging results.

We have also generalised SIA to produce a new
pattern-matching algorithm. This algorithm, called
SIA(M)ESE, takes as input a query pattern and a dataset
and outputs a set of matches for the query pattern in the
dataset. SIA(M)ESE is capable of true polyphonic music
pattern matching in����� ���� �� time when looking for
a �-dimensional pattern of size � in a �-dimensional text

of size �. This makes SIA(M)ESE more efficient than ex-
isting algorithms for this purpose.

The work presented here is subject to patent protection.

1 Introduction

Many music analysts [13, 15] and music psychologists [10]
agree that one of the most important steps in achieving a
satisfying interpretation of a musical surface is the identi-
fication of important instances of repetition.

Our goal is to build a computational model of expert
music cognition and it seems clear that one of the most im-
portant components in such a model would be an algorithm
that can identify the most significant instances of repetition
in a musical surface.

However, this brings with it an issue of computational
efficiency. The datasets over which such a model must op-
erate are significantly large. Therefore, it is important that
the methods used are computationally efficient as well as
logically correct.

In this paper, we present a new algorithm, SIATEC,
which is to form the basis of such a model. It computes all
the occurrences of every maximal repeated structure in any
body of data. In the present application, the body of data
we study will represent a musical score. The worst-case
running time of SIATEC is ����� where � is the size (in
notes) of the score to be analysed. We describe SIATEC in
�3.

The output of SIATEC is in the form of sets of musi-
cal structures which are repeated (viewing transposed oc-



curences as repetitions). But there are many such struc-
tures which would not normally be recognised as musically
significant. In �4, we outline how heuristics can be used to
select the more useful of these sets.

SIA(M)ESE (see section 5 below) is a generalisation
of SIA (the part of SIATEC that computes the maximal
repeated structures) which can be used for pattern match-
ing. SIA(M)ESE is significantly more flexible than other
approaches to the same task. In particular, it is capable,
without modification, of finding polyphonic query patterns
in polyphonic sources. In this case, the worst-case run-
ning time of SIA(M)ESE is���� ���� �� for a query pat-
tern containing � notes and a source containing � notes
(assuming � � �). This is very competitive with other
approaches (see �2.2). Furthermore, the output format for
this application of the algorithm is in a form which we be-
lieve is more useful than that obtained from other compa-
rable pattern-matching algorithms.

Finally, in �6, we propose some further applications of
the SIA family of algorithms.

2 Related Work

2.1 Related Work on Pattern Discovery

Lerdahl and Jackendoff [10, p. 52] state that

the importance of parallelism [that is, approximate
or literal repetition] in musical structure cannot be
overestimated. The more parallelism one can de-
tect, the more internally coherent an analysis be-
comes, and the less independent information must
be processed and retained in hearing or remember-
ing a piece.

However they are unable to state precisely the conditions
that must be satisfied by two passages before they can legit-
imately be “construed as parallel”. Nonetheless, they are
able to say that two passages that are “identical” (i.e. re-
lated to each other by exact or exact transposed repetition)
“certainly count as parallel”.

Lerdahl and Jackendoff are not the only authors to em-
phasize the identification of repetition (or ‘parallelism’) in
interpreting music. Ian Bent [2] defines music analysis as

the resolution of a musical structure into relatively
simpler constituent elements, and the investigation
of the functions of those elements within that struc-
ture.

Bent points out that “the phrase ‘musical analysis,’ taken in
a general sense, embraces a large number of diverse activ-
ities” that “represent fundamentally different views of the
nature of music” [2, p. 1]. Nevertheless, in his view, the
“central activity” of music analysis is comparison and “the
central analytical act is thus the test for identity” [2, p. 5].

In his General Computational Theory of Musi-
cal Structure (GCTMS), Emilios Cambouropoulos [3]
presents what amounts to a computational model of his

own interpretation of the semiotic method of analysis of
Ruwet, Nattiez and their colleagues. In GCTMS a musi-
cal surface is first segmented according to local grouping
principles embodied in a program called the ‘Local Bound-
ary Detection Module’ [3, pp. 64–81]. The surface is then
analysed by a ‘Sequential Pattern Induction Algorithm’
that identifies repetitions in the surface. A ‘Selection Func-
tion’ is then used to assign a value to each instance of
repetition found by the Sequential Pattern Induction Algo-
rithm. This value increases with the length of the pattern
and its frequency of occurrence and decreases with the de-
gree to which instances of the pattern overlap. Finally, the
results generated by the Sequential Pattern Induction Algo-
rithm and the Local Boundary Detection Module are used
to produce a segmentation of the musical surface. This
segmentation is given as input to another program called
Unscramble which compares the segments in the segmen-
tation and categorises them, placing similar segments into
the same category.

In the computer science field of stringology (see �2.2)
a considerable amount of work has been done on the de-
velopment of algorithms for retrieving information from
music databases. However, relatively little work has been
done on machine discovery of repeated patterns in musical
data and that which has been done [7, 14, for example] has
been limited to the discovery of repetitions in monophonic
databases or databases of polyphonic music in which the
parts have been extracted and each part is represented as
a separate string of intervals. Representing a polyphonic
piece in this way means that a repetition discovery algo-
rithm will fail to identify any instances of repetition in
which the repeated pattern contains notes from more than
one voice or part.

2.2 Related Work on Pattern Matching

The current state of the art in music information retrieval
(MIR) has mostly been cast as a combinatorial pattern
matching problem [4, 8].

Because the conventional string matching methods
were originally developed for text matching, and texts do
not share many of the features that are intrinsic to music,
the whole framework needs to be modified in order to ob-
tain musically meaningful matching results [8, 12]. The
most salient feature of music that is not pertinent to text
but is certainly pertinent to our study, is that real music is
(almost) always polyphonic. Unmodified string-matching
techniques are therefore not appropriate to polyphonic mu-
sic matching.

Some approaches have been designed with polyphonic
music in mind right from the start, though, strictly, they
deal with a homophonic approximation to polyphonic mu-
sic. The usual approach is to represent music as strings of
chords �� � ��

� � � ��
�

�
� each of whose elements contains

simultaneous musical events.
Dovey [5] also allows parametrized spacing between



the consecutive elements in the dataset, but the datasets
he considers may be polyphonic. Because the algorithm
tries to find an occurrence of the given template recur-
sively in every possible location with every allowed spac-
ing within the dataset, its time complexity becomes im-
practical for very large datasets; the worst case takes
�������� ��������, where � is the size of the template,
and �� and � are the length of the dataset in chords and the
length of the allowed spacing, respectively. Moreover, to
find transposed occurrences, the algorithm has to be reiter-
ated for each possible transposition. In Dovey’s algorithm,
the template to be searched for may itself be polyphonic.

Uitdenbogerd and Zobel [16] combined ideas from
music psychology with the straightforward application of
conventional string matching methods. Their aim was to
develop a heuristic capable of capturing the (monophonic)
musical line that best represents a passage of polyphonic
music. In their experiments with human listeners, a heuris-
tic that always chooses the highest note of a chord per-
formed the best. Thus, combining any conventional string
matching method with their heuristic may be applied to the
problem at the cost of losing information.

Holub et al. [6] presented an algorithm based on the
so-called bit-parallel algorithmic technique. They started
by using the well-known shift-or algorithm of Baeza-Yates
and Gonnet [1] to find multi-templates (several templates
combined in a single query) within monophonic datasets,
and arrived at an algorithm capable of finding multi-
templates within polyphonic datasets in��� ��� time1 with
a preprocessing phase taking����� ����� time. Here �	 �
and ���� denote the maximum number of events within any
chord, the number of templates, and the number of sym-
bols used in the templates, respectively. Holub et al. did
not, however, consider transposition invariance. From a
similar starting point, Lemström and Tarhio [9] introduced
an algorithm, called MONOPOLY, capable of finding all
transposed occurrences of a monophonic template within
polyphonic datasets. The essential part of their algorithm
runs in linear, ����� time2 (with an ������ preprocessing
and an ������� ���� postprocessing phase).

3 Pattern Discovery: SIATEC

First, we present a new algorithm, SIATEC (structure in-
duction algorithm with translational equivalence classes),
which can discover complete sets of translation-invariant
patterns in any set of points in an n-dimensional Cartesian
space.

SIATEC takes such a multidimensional dataset as in-
put and generates a set of translational equivalence classes
(TECs). We say that two patterns in a dataset are transla-
tionally equivalent iff one can be obtained from the other
by translation alone. Each pattern in a dataset is a mem-

ber of exactly one TEC. The TEC to which a pattern be-
longs contains all and only those other patterns to which
it is translationally equivalent. SIATEC generates for each
of the largest repeated patterns in a dataset the TEC that
contains that pattern.

The set of TECs generated by SIATEC for a musical
surface represented as a multidimensional dataset typically
contains the most significant repeated patterns. However,
it also usually contains many instances of repetition that
would not be considered musically significant by an expert
music analyst.

In the rest of this section, we present the logic of SIA,
the first stage of SIATEC, and an outline of the algorithm
of the whole SIATEC process. Full details of the algo-
rithms and their applications are given by Meredith et al.
[11].

3.1 The Logic of SIA

SIA can be characterised as the computation of the struc-
ture set � given by equations (1) and (2), from the dataset,
�. � is any set of points with any number of dimensions;
the dimensions may be measured on any finitely express-
ible metric so long as it is possible to give a total ordering,
�, on all the points in the vector space defined by �.

� � ����� � � � �� � �� (1)
� � �� � ������ � � � �� � �� � � � �� � ��		


 � ������� � ���� ������� ��� � � � �� � �� � (2)
� � ��� � ���� ������� ��� � � �

�� � �� � �� � ��		

The idea is to find all the maximal subsets of�, which
are translated by a non-zero vector in the space defined by
�’s dimensions, to another subset of �. The ordering, �,
prevents wastage of effort and duplication of results by re-
moving repetition under symmetry. The output, 
, is in
the form of a set of �vector,point-set� pairs, relating each
subset to the vector which translates it.

Note that there may be any finite number of intervening
elements between the consecutive elements of a repeated
pattern. In other words, SIA admits unlimited gaps in its
patterns with no extra computing cost.

� is the input to the next stage of SIATEC, which com-
putes the translational equivalence classes.

3.2 SIATEC

SIA alone simply computes every maximal repeated pat-
tern in a dataset. SIATEC takes the output of SIA as in-
put and then computes all the occurrences of each of the
maximal repeated patterns computed by SIA. The opera-
tion of SIA and SIATEC is described and analysed in detail
in Meredith et al.

1More precisely, the algorithm have a factor � �
�
� in its time complexity,where� denotes the size of computer words in bits. Thus, the best time complexity

is achieved only in cases where	 
 �.
2See Footnote 1.



3.3 Discovering Approximate Repetitions

So far, we have discussed only the discovery of exact rep-
etitions. It is, of course, often desirable to discover (or
match) inexact repetitions. There are two broad cases of
approximate matching:

1. where the approximation can be accounted for in
the notion of identity: for example, by considering
modal transpositions instead of chromatic ones;

2. where the approximation is more radical, and cannot
be considered as above.

In this second case, we argue there will often be some de-
gree of identity, which, one might say, forms a skeleton of
identity in which the approximation is framed. We specu-
late, therefore, that in this second, harder, case of approxi-
mate matching, we may be able to apply heuristic methods
not dissimilar to those introduced in �5.3, below.

4 Musical Applications

4.1 Applying SIATEC to music

In order to apply SIATEC to musical scores, we represent
the data on two dimensions, plotting pitch against onset
time. Because the SIA family of algorithms is multidimen-
sional, we can also add in other dimensions to represent,
for example, duration, timbre and dynamics.

The choice of representation is significant. For exam-
ple, representing pitch chromatically results in TECs con-
taining structures identical under chromatic transposition,
whereas a diatonic pitch representation allows SIATEC to
find structures identical under diatonic transposition. Be-
cause SIATEC works on multidimensional files, it is pos-
sible to perform both of these comparisons (and, indeed,
others as well) at the same time.

SIATEC can be feasibly applied to relatively large data
files, since it runs in polynomial time, so we have applied
it to files representing entire musical scores. While it is
successful in finding many musically significant structures,
it also finds many structures which would not usually be
considered musically significant. For example, applying
SIATEC to just the first two bars of the Prelude in C Mi-
nor (BWV871) of J. S. Bach’s Das Wohltemperirte Klavier
yields 133 TECs [11], most of which are musically in-
significant. To address this issue, we are experimenting
with heuristics to select muscially signficant TECs.

4.2 Heuristics for musical significance

We have developed a second program called MU that takes
as input a dataset representing a musical surface together
with the set of TECs generated by SIATEC for this dataset.
MU uses a set of heuristics to calculate a value of “mu-
sical significance” for each TEC in the set generated by
SIATEC for the dataset, and then sorts the TECs into of

musical significance for output. Ultimately, we expect
to develop different sets of heuristics for modelling differ-
ent behaviours and applications.

Our first heuristic supposition is that, other things be-
ing equal, the signficance of a TEC increases with the size
and frequency of repetition of the pattern. The second sup-
position is that patterns which significantly overlap are less
likely to be perceived as individual structures. Finally, as
an artifact of memory, a pattern is more likely to be sig-
nificant if its elements are close together in time. We are
currently experimenting with weightings of these aspects,
and we have been successful in selecting significant struc-
tures in some datasets. However, more work is required
before firm conclusions can be drawn.

5 Pattern Matching: SIA(M)ESE

We have also developed a new pattern-matching algorithm
based on SIA. This algorithm, called SIA(M)ESE, takes
as input a query pattern and a dataset and outputs a set
of matches for the query pattern in the dataset; the query
pattern and the dataset are both multidimensional sets of
points, which, in the current study, are used to represent
musical notes. In this section, we first state the logic of
the algorithm and then outline how it can be efficiently im-
plemented. We give some simple examples, and suggest
that the output of SIA(M)ESE is more useful for pattern
matching than that of similar approaches.

SIA(M)ESE is short for SIA (Matching) Express with
Selection and Evaluation, and these aspects are outlined in
this section. Full details of the algorithm and its applica-
tion are described by Wiggins et al. [17].

5.1 The Logic of SIA(M)

SIA(M) differs only slightly from SIA as described in �3.1.
In SIA(M), instead of computing the discovery set we com-
pute the set �, of repeated structures, we compute a match
set, of representing occurences of a template, � in a dataset
� using (3) and (4).

� � ����� � � � �� � 
 � (3)
� � �� � ������ � � � � � �� � ��		

� � ������� � ���� ������� ��� � � � �� � ��� (4)
� � ��� � ���� ������� ��� � � �

�� � �� � �� � ��		

There are just two small differences between these def-
initions and those given for SIA in �3. The first, and the
more significant, is that in SIA(M), the vectors, �, in 


are not specified in terms of two points, �� and ��, in the
dataset, �, ordered under � to avoid duplication under
symmetry as shown in (1). Rather, the vectors are gen-
erated from two separate sets of points inhabiting the same
vector space: the template, � , and the dataset, �. The sep-
aration of these two sets means that the efficiency measure
of removing equivalents under symmetry in generating 




no longer makes sense, so the � term of (1) is not present
in (3).

The only difference between the subsequent calcula-
tions of � (2) and � (4) is that the final � has been re-
placed by �. This is to admit alternative notions of equal-
ity. For example, in the case where we are matching a hu-
man performance against an idealised, quantised database,
we may want to relax equality a little to avoid having to
deal with jitter explicitly in the match-finding process (see
Section 5.3).

5.2 SIA(M)E

We have implemented this logic in an efficient program
called SIA(M) Express. The worst-case running time of
this program is ���� ���� �� but we have developed a
special implementation that has an average running time
of �����. The algorithm computes all and only the non-
strict subsets of the template, � , to be found within the
dataset � paired with their locations in �.

The output of SIA(M)E returns strict matches without
further processing, but partial matches require a little more
work. The output format of SIA(M)E contains all partial
matches in the sense that it locates all subsets of the tem-
plate which have matched the dataset. The task is then
to assemble these fragments into a good match. What is
“good”, of course, is domain dependent.

5.3 SIA(M)ESE

We have developed some simple heuristics, outlined in
[17], which will assist in this task; there is insufficient
space to present them here. It is likely that SIA(M) will re-
quire a different set of heuristics for each domain to which
it is applied.

The class of matches generated by SIA(M)ESE for a
given query pattern turns out to be highly appropriate for
use in assessing student feedback in computer-based music
and language education systems. We are currently assess-
ing its use in such a system [18].

Because they allow arbitrary gaps in their matches, the
SIA(M) family of algorithms is capable of finding tem-
plates at arbitrary levels of detail in the dataset – the level
of detail found is simply that given in the template.

6 Further Work

Because of the generality of SIA, SIATEC and
SIA(M)ESE, they are useful for a wide range of appli-
cations. Future work on application of the algorithms will
include

	 cognitive modelling of music perception;

	 music transcription from audio signals (by applica-
tion to Fourier spectra or acousmagraphs);

	 music and sound analysis;

	 data compression (including video and audio);

	 video processing and image matching;

	 music database indexing;

	 protein structure analysis.

All of these potential applications are covered by the
current patent on the algorithms presented here.
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