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ABSTRACT 

In the interest of establishing robust benchmarks for 
search efficiency, we conducted a series of tests on 
symbolic databases of musical incipits and themes taken 
from several diverse kinds of repertories. The results we 
report differ from existing studies in four respects: (1) 
the data quantity is much larger (c. 100,000 entries in 
all); (2) the levels of melodic precision are more 
refined; (3) anchored and unanchored searches were 
differentiated; and (4) results from combination pitch-
and-rhythm searches were compared with those for 
pitch-only searches.  

The results were evaluated using a theoretical approach 
which seeks to rank the amount of effort required to 
achieve “uniqueness.” How far into a melody must a 
search go in order to “find” an item which is unmatched 
by any other of the available items? How much does the 
answer depend on the specificity of the query? How 
much does anchoring the query matter? How much does 
the result depend on the nature of the repertory? We 
offer experimental results for all of these questions. 

The Themefinder Database (http://www.themefinder. 
org) contains a family of databases encoded in the 
Humdrum **kern data-format. Unlike MIDI data, in 
which some pitch-data, vis-B-vis notation, is ambiguous, 
this format provides explicit pitch and duration 
descriptions for all notes. This enables evaluation of the 
importance of distinguishing between enharmonic 
spellings (e.g., C# vs. Db), where MIDI offers only one 
designation. The constituent collections (some publicly 
searchable, others limited to licensed use) each 
represent a different kind of music (Table 1). Some 
collections are tonal, some modal, and one is pentatonic. 
Within the tonal collections, significant range can be 
found with respect to diatonic, chromatic, and 
(occasionally) enharmonic usage. Starred items in Table 
1 are publicly searchable. 

The main purpose of the Themefinder website is to 
enable trained musicians to identify works by their 
melodies as remembered. Users are assumed to be 

notationally literate, since they are most likely to seek a 
work-title. That is, they are seeking textual meta-data 
from a symbolic-data search. Results are viewable in 
notation and playable as corresponding MIDI files. The length 
of the queries is at the discretion of the user.  

Dataset Genre(s) Original 
code 

No. of 
incipits 

Essen 
European* 

Folksongs EsAC 6,232 

Luxembourg* Folksongs 
(European) 

EsAC 612 

Essen Asian*  Folksongs EsAC 2,241 
TF Classical* Instrumental 

(sonatas, quartets, 
concertos, 
symphonies); Vocal 
(operas, cantatas)  

MIDI (re-
edited) 

10,718 

Renaissance 
Italian* 

Motets, 16th cent. DARMS 18,946 

Polish 
religious 
monophony 

Devotional songs, 
16th, 19th cents. 

EsAC 6,060 

RISM A 
II/US 

Instrumental and 
vocal, 17th-18th 
cents.  

Plaine & 
Easie 
Code 

55,490 

Total   100,299 

Table 1. Constituent databases in Themefinder.  

Pitch can be searched by the user at five levels of 
precision. We give them in the order in which they 
appear on the Themefinder search-form: 

[1] Gross contour. Intervals are assigned to one of 
three categories by melodic direction (up, down, 
or the same);  

[2] Refined contour: Intervals are assigned to one of 
five categories: steps (of 1 or 2 semitones) up or 
down, “skips” (movements of 3 or more 
semitones) up or down, or unchanged; 

[3] Scale-degree profile: Pitches are described by 
their diatonic position in a tonal (major or minor) 
scale; 

[4] Intervallic profile: Each interval is specified by 
melodic direction, diatonic size (3rd, 5th, etc.), 
and “quality” (perfect, major, minor, augmented, 
diminished); 

[5] Exact pitch profile: Notes are named by letter 
(A..G) and inflection (sharp, flat, natural). 
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The search-engine available to users contains a meter 
filter but currently offers no defined description of 
rhythmic values on an item-per-item basis. We have 
observed that exact-pitch searches penalize faulty 
recollection and that gross-contour searches often 
produce an inappropriately large number of candidate 
matches. We had come to believe that scale-degree 
searches are the most robust for tonal music, but we had 
not attempted to evaluate the search methods statistically 
prior to this study.  

1. REPERTORY DESCRIPTION 

None of the component datasets in Themefinder 
originated as **kern data, which represents pitch, 
duration, barring, and the global variables of notation 
music (meter signature, key signature, clef, etc.). All the 
repertories were originally encoded at a level of detail 
sufficient to support translation into **kern. The total 
number of records available used in this study was 
100,299.  

The use of musical incipits raises fundamental questions 
of musical identity. All incipits are monophonic as used 
in Themefinder, but some of the underlying repertories 
are polyphonic. In relation to polyphonic music, Lincoln 
[5] gives one incipit for each voice (typically five). 
RISM gives the incipit (usually from the highest-pitched 
instrumental or voice, e.g., Violin 1 or Soprano) but is 
generous to giving separate incipits for linked portions 
of a single movement (e.g., instrumental ritornello and 
aria). 

A qualitative difference distinguishes incipits from 
themes. “Incipits” introduce a song, work, or 
movement. They serve well for short works that are 
uncomplicated. “Themes” represent a piece of music 
(usually a longer, more complex one) in some more 
essentially cognitive way. The mental extrapolation of 
themes is a human task and therefore vulnerable to 
subjective variation. As best we know, there is no study 
of the extent of difference that might be found by 
multiple subjects in the identification of thematic 
material.  

In constructing this series of tests, we gave 
consideration to the relationship (or lack thereof) 
between incipits (in monophonic contexts) and overall 
pieces (we did not distinguish between incipits and 
themes per se). We subsequently compared search 
results for incipit data and full-work data for the Essen 
folksong collection (in which German/Austrian folk-
music predominates). 

The repertories vary substantially by mode. The Essen-
European, Classical, and RISM datasets are 
overwhelmingly tonal. The Renaissance Italian database 
employs modes of the period; the Polish data contains 
two subsets and is almost evenly divided between modal 
and tonal monophony. The Essen-Asian dataset is 

pentatonic. Pentatonicism (the use of five tones per 
octave) makes scale-degree searches ambiguous, since, 
when mapping five-tone profiles onto seven-tone grids, 
quantitative differences in “scale”-degree usage are 
inevitable. Since we were interested in comparing 
procedures and their effectiveness in different 
repertories, we did not attempt to correct for this 
distortion. The Renaissance repertories subscribe to 
different systems of rhythmic organization than what is  
conventional in common music notation (CMN). This 
discouraged the investigation of multiple tiers of 
precision in rhythmic definition. 

2. EXISTING STUDIES 

In searching for related literature, we found few studies 
which were systematic in nature and which addressed 
substantial quantities of data, although many studies 
touched on some aspect of this general area of enquiry. 
Both Dannenberg et al. [2] and Rand and Birmingham 
[6] explored similar procedures but in relation to a 
query-by-singing situation. In [6] (the chronologically 
earlier study) 188 MIDI files were used as a basis for 
profiling durational change, pitch change, and “note-
drop” in an effort to simulate the kinds of user errors 
anticipated in sung input. They noted that correlation 
coefficients and count correlations performed equally 
well in processing and combined them in a modified 
scoring metric. In [2] one database of 2,844 items was 
generated from a MIDI collection of Beatles songs and 
a second, of 8,926 themes (averaging 41 notes), was 
based on an encoded collection of monophonic 
folksongs. Here they compared the results of metrics 
derived from (1) pitch plus inter-onset intervals (IOI), 
(2) melodic contour matches, and (3) Hidden Markov 
Models. They found the second and third procedures to 
be slow in processing time and found the best 
performance to come from “note-IOI” couplings.  

The closest parallels with our own work are found in [4, 
7, 8]. The first two were concerned with sorting records 
stored in related symbolic databases into a musical 
equivalent of alphabetical order for bibliographical 
purposes (e.g., finding concordances for works which 
are anonymous or which are attributed to multiple 
composers). The authors of [8] sought to determine the 
feasibility of the query-by-humming approach by 
simulating some of the known deficiencies in user input. 
They considered melodic representation at five levels of 
pitch-resolution, but it is unclear exactly how 
“intervals” were defined at some levels (in the 
categories “3, 5, 7, 9, 12”) of “pitch resolution.” They 
attempted to simulate different levels of inaccuracy in 
sung queries. They reported results for different 
database-sizes (of 0.6, 1.2, 2.5, and 3.6 million notes) 
and search-key lengths (8-4 tokens). They found that a 
“three-interval contour” required a 1.7 longer query-
length than a semitone (“12 interval”) resolution. They 
reported that 5-state, 7-state, and 9-state representations 
of the underlying melodies led to similar results but in 



  
 

 

all cases produced improvement over three-state 
representations. 

3. METHODS 

3.1. Levels of Pitch and Rhythmic Resolution 

We used the Themefinder data collections directly to 
avoid restrictions of the user interface and to process 
data more quickly. We therefore did not use the 
wildcard possibilities offered to users.  

The high degree of precision in pitch-specification in 
the underlying datasets made it possible to investigate 
levels of precision on which no literature appears to 
exist. We therefore expanded the number of levels of 
precision (Table 2). For the purposes of this study we 
created a (three-state) rhythmic analogue to gross-
contour descriptions of pitch in which each new event 
after the first note was classified as greater than, less 
than, or the same in duration as its predecessor.   

Search type No. 
of 
states 

Description 

Pitch/gross contour 
(pgc) 

3 Each event after 1st is 
classified as being up, down, 
or unchanged in pitch in 
relation to its predecessor. 

Rhythmic/gross 
contour (rgc) 

3 Each event after 1st is 
classified as being longer than, 
shorter than, or the same 
duration as its predecessor.  

Pitch/refined 
contour (prc) 

5 Each event is classified as 
being a step or skip, up or 
down, from its predecessor, or 
as being unchanged. 

Scale-degree (sd) 7 The diatonic scale-degree of 
each pitch is evaluated; 
restricted by octave.. 

12-tone pitch class 
(12p) 

12 The chromatic scale-degree of 
each pitch is evaluated 
(limited to one octave). 

12-tone pitch 
interval (12i) 

12 
(24) 

The chromatic size of each 
interval is evaluated; 24 states 
required if preserving 
direction. 

Base-40 pitch (pch) 40 An enharmonic-pitch index is 
derived.[3]. 

Melodic-interval 
(mi)  

40 
(80) 

An enharmonic intervallic 
index is derived [3]; 80 states 
required if preserving 
direction. 

Table 2. Levels of pitch, rhythmic, and intervallic precision 
and their associated numbers of theoretical states within the 
bounds of one octave. The numbers shown in parentheses 
accommodate directional couplings (i.e., size plus direction, if 
the next pitch is higher or lower). 

One subtlety of pitch representation that is too little 
discussed in music-query literature is the effect of octave 
discrimination in the representation of the analyzed data. 
In the mainframe era it was convenient to fold pitch 
representations onto a single octave to save storage and 
speed processing. As processor speed increases and as 
database-size grows, it is increasingly desirable to leave 
octaves unfolded. The alternative numbers in Table 2 
suggest the extended range when direction-of-change 
(up or down) is accommodated. 

Another critical element in classical-music repertories 
for large database searches is enharmonic discrimination. 
Does the pitch-representation distinguish between 
enharmonic notes (C# vs. Db)? The base-40 system of 
pitch-representation [3, Appendix 1, Table 8] supports 
enharmonic discrimination through double sharps and 
double flats. This elevated level of pitch representation 
enables the preservation of the nomenclature of 
intervallic complementarity customary in music theory 
[Appendix 1, Table 9] using a single integer. The 
numeral representation of a major third (12), for 
example, when added to that of a minor sixth (28) equals 
that of an octave (40); a minor third (11) when added to 
a major sixth (29), also equals 40. Such discrimination is 
of value chiefly for repertories that are likely to include 
double sharps and flats (i.e., music of the 18th-20th 
centuries). It is also necessary for extracting correct 
diatonic scale degrees from highly chromatic music, for 
example, but it is of little value for folk or popular 
repertories.  

Our combined pgc/rgc searches employ 9 (3*3) states, 
since either variable may change independently of the 
other. 

In actual computation, not all possible feature states are 
used. We find that the number of states encountered at 
higher-orders of pitch precision varies from repertory to 
repertory. Also, intervallic searches at higher levels of 
precision are computed with discrete octaves (i.e., the 
interval of a perfect twelfth is not equated with that of a 
perfect fifth), so the range of actual feature states varies 
with the database and the method. We show selected 
effects in Table 3.  

Search-type Actual no. of states required 

 Classical Polish All 

12i 70 40 88 

pch 29 26 32 

mi  95 52 109 

Table 3. Actual numbers of states for various database 
features. 

We would point out here that the pch figures represent 
values folded onto one octave, although the systems can 
be used over an arbitrary numbers of octaves. The 
classical dataset is overwhelmingly instrumental, while 
the Polish data is exclusively vocal.  



  
 

 

3.2. Measures of Effectiveness 

Entropy is a measure of diversity used in comparisons 
of information. In mathematic terms, entropy, H(X), 
evaluates the randomness of a variable in terms of how 
widely spread the probability distribution, P(X), is. 
Mathematically, it can be shown that 2H(X) is never 
larger than the actual number of states. H(X) is 
measured in bits. Equation 1 gives the definition of first-
order entropy [1], 
 
                             H(X) = Σ SPi log2 Pi                                    (1) 

 
where P is the probability distribution of X, and the sum 
of all Pi is 1. 

On the other hand, the entropy rate, G(X), describes the 
unpredictability of a random process Xn. A random 
process Xn with a large entropy does not necessarily 
have a large entropy rate. Mathematically, it can be 
shown that G(X)#H(X). G is measured in bits/symbol. 

If X varies in time and forms a sequence, then its entropy 
rate, G, is defined as 
 
                                  G = H(Xn) / n                             (2) 
 

where Xn  denotes the random vector (X1, X2, …, Xn), 
and its entropy can be calculated by summing over all 
possible sequences.  

When combining two features in a search, joint entropy, 
H(a,b), refers to the combined entropy of the features. 
The joint entropy is always less than or equal to the sum 
of the individual features. Mutual information, I(a;b) is 
that portion of the joint entropy which is shared by both 
features (see Figure 1). 

 
Figure 1. Venn diagram showing relationship of joint 
entropy, conditional entropy, and mutual information. 

We now define two experimental measures related to 
entropy rate: 

Time-to-uniqueness (TTU): a measure to establish the 
minimum number of tokens needed in the search-string to 
produce a single match candidate.  

Time-to-sufficiency (TTS): a measure to establish the 
minimum number of tokens needed to produce not more 
than K match candidates. 

We use TTS to calculate G:  

                         G = log2 (M/K)/TTSK                         (3) 

where M is the total number of unique incipits in a 
dataset, K defines the cut-off number of match for 
sufficiency (K = 10), and T is the average time-to-
sufficiency of all anchored search. 

TTS determines entropy rate more accurately than TTU 
does, provided that the search-decay rate remains 
exponential up to the TTS point. We note that the match-
rate begins with an exponential decay which flattens out 
when the match-count become small. This typically 
happens between the TTS and the TTU points (see 
Figure 2).  
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Figure 2. Match-count vs. query length for the complete Essen 
datasets.  

4. PROCEDURES 

4.1. Series 1 (Data Features) 

We ran tests on the seven levels of pitch-resolution and 
the one of rhythmic resolution explained in Table 2. 
With those figures in hand, we reran the first seven tests 
in combination with rhythmic gross contour (rgc). Thus 
the number of search types run in this series was 15. 

4.2. Series 2 (Search Features) 

We ran tests in two modes: anchored to the beginning 
of each example and unanchored. Anchored searches 
are suitable for incipits. Unanchored searches may be 
more useful for themes. They are also potentially useful 
for searches of fully encoded electronic scores, in which 
thematic repetition is likely to occur. 



  
 

 

For the first two series, we calculated the differences 
between repertories where appropriate. 

4.3. Series 3 (Representational Adequacy) 

We tested the results for incipits against the results for 
full-score searches in the Essen dataset. Our purpose was 
to determine the extent to which the tests we ran on 
incipits would be valid for complete works. Since the 
Essen data is monophonic, it does not fully represent a 
polyphonic database but gives a best-case notion of the 
relationship.  

5. RESULTS: DATA FEATURES 

The most noteworthy preliminary finding was that 
searches combining pitch and rhythmic features 
significantly reduced the both TTS and TTU (Table 4). 

 TTS TTU 

Uniformly random pgc + rgc 
(theoretical) 

3.7 4.9 

pgc + rgc (actual) 4.5 6.9 

pgc (actual) 7.2 10.2 

rgc (actual) 8.7 10.2 

Table 4. Preliminary results from Essen data for separate and 
combined pgc and rgc effectiveness measures. 

The exercise of running these tests raises a new question 
about joint-feature searches in general: Should the 
features be searched in parallel (that is, should 
coincident matches be assessed for every feature-pair?) 
or should they be searched serially? We hope to explore 
this question at a later time. 

No TTU could be retrieved for highly generic themes, 
but the details vary by dataset size and feature-set. (For 
example, for pgc in the classical set, 11% did not 
achieve TTU within the full incipit size.) Because certain 
incipits did not have a unique match, their TTUs were 
excluded from averages.  

The convergence pattern we show in Figure 3 is 
representative of what we found in all of the databases, 
although there are small differences in the details from 
repertory to repertory. The average TTS, given the 
greatest precision in pitch resolution and an anchored 
search, was found to be less than 6 [data tokens], but the 
performance differences between the four most precise 
levels were minimal. This confirms and refines previous 
results reported by Schlichte [7] and Howard [4].  

Because they were working exclusively with RISM data, 
we chose the table representing RISM data to show here. 
The scope of their datasets, which were not identical 
(nor was ours to either of theirs), are discussed in [4]. 

US RISM (55,490 incipits)
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Figure 3. Average search length required for unique (TTU) 
and sufficient (TTS) matches in the US RISM dataset (55,470 
incipits). The X axis identifies the seven levels of pitch (or 
intervallic) precision. The Y axis indicates the average number 
of events required to match each type. TTU = time-to-
uniqueness.  TTS = time-to-sufficiency. 

Perhaps the most important finding in this set of tests 
was that the most significant increases in search-
effectiveness come from the progressions in data-
precision from pitch/gross-contour (pgc) to prc, and 
from scale-degree (sd) to 12-tone pitch (12p). However, 
the improvement in performance of sd (7-states) over 
prc (5 states) is slight, a finding which is generally 
similar to [8]. We found insufficient evidence of 
interdependency between pitch and rhythm (Table 5) to 
warrant further investigation at this time. 

Using conditional entropy, H(a|b) = H(a,b) – H(b), the 
results are shown in Table 5.  

Entropy type Definition Value 

pgc first-order entropy  H(pgc) 1.5325 

rgc first-order entropy  H(rgc) 1.4643 

joint first-order entropy  H(pgc, rgc) 2.9900 

conditional pitch entropy 
given the rhythm 

H(prc|rgc) 1.5256 

conditional rhythmic 
entropy given the pitch  

H(rgc|pgc) 1.4575 

mutual information H(pgc) – 
H(pgc | rgc) 

0.0068 

Table 5. Calculation of mutual information from first-order 
pitch and rhythm entropies. (values based on Essen datasets.) 

These tests gave useful insights into the results of the 
more extensive series of measures we derived from 
coupling rgc with each level of pitch precision (Figure 
2). The gains from the addition of rgc caused the 
requisite number of events to decline by 40% (with pgc) 
and by smaller amounts with more precise levels of 
pitch. (See Tables 4a, b.) 
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Figure 4a. Pitch-only (seven levels) vs. joint searches with 
rgc. Dark bars show rgc alone and successively with each 
level of pitch precision plotted against the number of events. 
This view shows results for the Essen-Asian (pentatonic, full-
score) dataset. Light bars show seven levels of pitch/interval 
precision without rhythmic information.  

One notable finding is that rgc is nearly as effective as 
pgc in the classical repertory (4b) but less so the 
folksong repertory (4a). The additional gain in 
combining rgc with other levels of pitch-precision is 
modest. 

6. RESULTS: SEARCH FEATURES 

In the realm of anchored matches, we attempted to 
compute the relative gain which might be expected for 
each single-note addition to a query. Here the dataset 
contained 8,473 fully encoded folksongs. We found that 
after the processing of the first five items, the curve 
representing incremental gain for the most recently 
added item flattened considerably (Figure 2). Table 6 
gives comparative rates for anchored (to the first note) 
and unanchored searches (i.e., the match could begin 
anywhere in the song). The average length of the songs 
in the dataset was 52 notes. 

Anchored search Unanchored search 
Query length Matches  Query length Matches 

1 1,719.55 1 7,194.33 

2 369.83 2 3,179.93 

3 91.18 3 883.09 

4 26.07 4 221.86 

5 8.92 5 55.75 

6 3.67 6 15.46 

7 2.28 7 5.61 

8 1.64 8 2.58 

9 1.47 9 1.77 

15 1.24 15 1.25 

22 1.18 22 1.19 

Table 6. Comparison of anchored and unanchored searches, 
events 1-9, 15, 22 (Essen folksong full scores). 

Classical (10,724 incipits)
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Figure 4b. Pitch-only vs. joint searches with rgc as in Figure 
4a for the classical theme database.  

7. RESULTS: ENTROPY 

We attempted to determine how “complex” each of the 
repertories is. Figure 5 compares the first-order entropy 
with the experimentally measured entropy rate for the 
various datasets. The first-order entropy indicates the 
maximum expected complexity of the music, and the entropy 
rate quantifies the actual complexity. Figure 5 demonstrates 
that the classical-theme dataset is the most “complex” from 
the perspective of informational feature (here 12p) 
variety, while the Polish religious-song corpus is the 
least “complex.” The Renaissance dataset has the lowest 
first-order entropy. However, its entropy-rate is higher 
with respect to its entropy than any other dataset.  This 
means that even though the Renaissance incipits use 
fewer twelve-tone pitches than the classical theme set, 
the incipits are just as “complex.” 
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Figure 5. Twelve-tone pitch (12p) randomness per repertory, 
sorted by first-order entropy. Light bars show first-order 
entropy. Dark bars show entropy rate. 



  
 

 

8. RESULTS: INCIPIT ADEQUACY 

In another series of tests, we tried to determine what the 
relationship was between searches of a musical incipit 
and searches of the work from which the incipit was 
derived. This question can be paraphrased in two ways: 
(1) How representative is the incipit of the work as a 
whole, or (2) How efficient is it to search one in relation 
to the other? Here our tests delved further into the 
question of anchored vs. unanchored searches. 

Answers to (2) are provided in Table 7. The results 
suggest that an unanchored search requires, on average, 
the addition of one event to the query. The repertories 
used were those of the Essen datasets, which were the 
simplest ones available. The average number of notes 
per incipit was 18; the average number of notes per song 
was 52. This 1:3 relationship would obviously not hold 
for longer pieces or for polyphonic works in which all 
parts merit searching. 

  Incipit only Full work 
TTU (mi) 6.87619 8.74826 Anchored 

search Failure rate 0.669% 0.0354% 
TTU (mi) 7.926 10.2858 Unanchored 

search Failure rate 1.07% 0.0472% 

Table 7. Comparison of TTU (computed by interval) for 
incipits and for the full works from which they originate 
(results are based on the Essen folksong datasets.) 

9. PRACTICAL OBSERVATIONS 

Processing time proved to be a significant constraint 
with the compilation of results for the larger datasets.  
The primary search engine for the web-based version of 
Themefinder is a PERL script which interfaces 
ultimately with the Linux command-line program grep 
with an O(N) search efficiency, where each search takes 
approximately one second. 

Raw search statistics for the complete set of 100,000 
incipits require 1.76 million searches for each type of 
feature, so using the pre-existing search engine was not 
practical.  A search program was therefore written in C which 
kept the sorted datasets in memory between searches. This 
program had the ability to perform anchored searches on 
the dataset of 100,000 incipits at a rate of 487 
searches/second for a 1.5 GHz computer. 

Obviously, the greater the number of states considered, 
the longer the processing time required. For anchored 
searches the computational complexity is O(log N) 
where N is the number of incipits in the dataset. For 
unanchored searches which are searched without presorting, 
the complexity is O(N), where N is the number of features in 
the dataset. The processing time for unanchored searches 
on 100,000 incipits was approximately three days for 
each feature set. 

10. CONCLUSIONS 

We cannot report the full range of our findings in the 
space available, but we call attention to a few of the 
most significant ones. Other results will be posted in 
due course at www.ccarh.org. 

Combining rgc and pgc is an effective search strategy 
since there is little mutual information between the two 
features. Both features are vague by themselves, but 
together they are as effective as pitch-only scale-degree 
searches. Interestingly, incorporating rgc with other 
more specific pitch features yields only marginally 
better TTS/TTU times (about 1.5 fewer notes required 
in the search query, as compared to 4.5 fewer notes with 
pgc). 

Octave information does not significantly improve 
search results, since the pch and mi sets had nearly 
identical entropy rates. The pch set did not encode 
octave, while the mi set preserved octave information. 
Also, enharmonic spellings are not more effective than 
twelve-tone search types, since 12p and pch have very 
similar entropy and entropy-rates. 

We refrain from making fine-grained comparisons 
between our results and those cited above both because 
of insufficient information about some details of 
previous work and also because the studies we cited all 
had motives somewhat different from our own.  
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APPENDIX 1. 

Note name Value  Note name Value
Cbb 1  F# 21
Cb 2  F## 22
C 3  . 23
C# 4  Gbb 24
C## 5  Gb 25
. 6  G 26
Dbb 7  G# 27
Db 8  G## 28
D 9  . 29
D# 10  Abb 30
D## 11  Ab 31
. 12  A 32
Ebb 13  A# 33
Eb 14  A## 34
E 15  . 35
E# 16  Bbb 36
E## 17  Bb 37
Fbb 18  B 38
Fb 19  B# 39
F 20  B## 40

Table 8. Numerical values representing note-name and 
inflection in the base-40 system. The number 40 represents 
one octave. Multiples of 40 represent octave. (Alternatively, to 
preserve the octave number for diatonic pitch names, the 
values can be arrayed from 0 to 39). Five positions are null. 

 
Interval 
name 

Value
  

Interval 
name 

Value 
 

Total

P1 0 + P8 40 = 40
aug1 1 + dim8 39 = 40
 +   
dim2 4 + aug7 36 = 40
min2 5 + maj7 35 = 40
maj2 6 + min7 34 = 40
aug2 7 + dim7 33 = 40
 +   
dim3 10 + aug6 30 = 40
min3 11 + maj6 29 = 40
maj3 12 + min6 28 = 40
aug3 13 + dim6 27 = 40
 +   
dim4 16 + aug5 24 = 40
P4 17 + P5 23 = 40
aug4 18 + dim5 22 = 40

Table 9. Interval states used in mi feature searches showing 
their equivalent base-40 numeric values. The table 
demonstrates the intervallic complementarity of the base-40 
system. 


