MIDI Data in Relation to Notational Requirements

MIDI for Notational Input

One of the most frequently encountered but least well understood aspects of MIDI is how poorly it serves most of the parameters needed to produce accurate musical notation. MIDI data entry is a standard feature of most current notation programs. It is a great asset to “proof-hearing” files created on a MIDI keyboard. It offers many options for playback that enable to user to try different methods of arranging and editing music. It is in the input area where its deficiencies become apparent.

MIDI is attractive because it offers fast entry of data. For amateur musicians, the quantity of MIDI data available in internet archives is a boon. MIDI data can provide rapid display of a “score” consisting of pitch and duration data. 

MIDI data does not make provision for score refinements, however. If the music in question is fairly complex, a score produced from MIDI data often requires considerable correction to meet the minimum standard of musical literacy (i.e., a rate of accuracy that makes the scores easily readable by other musicians).

Core data retrievable from MIDI

Most of these problems are easily explained by the basic nature what MIDI is (and is not). One can easily retrieve a key number (representing pitch), and from it one can deduce (with total accuracy) the octave specification. In recent years, MIDI transcription programs (e.g., Finale and Sibelius) have significantly improved their algorithms for the interpretation of accidentals (pitch inflection), but there are some kinds of repertories (pre- and post-tonal ones, works in minor keys) which are not greatly benefited by algorithmic solutions.

All aspects of duration (as it is understood in the context of notation) must be deduced from MIDI’s high-resolution timing data. MIDI has not explicit barlines, meter, or symbolic durations. 

Thus vis-à-vis notation, MIDI can be said to be too imprecise in its specification of pitch and too literal in its specification of duration. These limitations on notation also serve, however, as aids to sound reproduction.

A musical example (Mozart)

In Beyond MIDI, we concentrate a lot of attention on a few set pieces to show how different kinds of codes handle some common musical situations. In this example from a Mozart piano sonata, the usual gobal variables (clef signs, key and time signatures) are present together with pitches and durations as conveyed through ordinary notes. The features that MIDI is not well suited to convey are the graphical reference items (staves, beams, barlines) and the arciulations (grace notes, arpeggios, slurs, staccatos).

Sound vs. symbol

Many of this items pose problems only because their existence is confined to the domain of graphics. It is not MIDI that is the culprit, but rather sound codes in general when used as a basis for notation. Beams and slurs simply don’t sound, although the well trained ear will notice their subtle effects in a live performance. 

The more perplexing problems are those posed by sounding objects that defy the logic of notation. Grace notes offer an excellent example: they sound, but not in notated time. The duration counts in the bars of this example are full without them. If they are omitted from MIDI, the output will not include them. If they are included, the note values of the succeeding regular notes will have to be diminished (as they are in actual performance) to accommodate them. 

Raw data from sound capture

Another way to look at the discrepancies between sound and written symbol is to “notate” the data elements which can be retrieved from MIDI. These examples show (1) sequential order of events (obviously including the grace notes) and (2) these events rectified for time (whereupon the grace notes disappear because their values are superfluous).
Non-sounding graphical objects

We can also isolate the non-sounding graphical objects which are essential to the legibility of notation.
Sound-symbol discrepancies

It is generally the case that markers which affect the number of events affect the some quality (often duration) of adjacent events. Dynamics offer one example. A “pp” [pianissimo] sign may appear once but apply indefinitely. Pedal markings (“Ped.”) are usually contradicted by pedal off markings (*), but several intervening events may occur. Bowing signs for the violin (V, et al.) are more precise. If the task at hand is to convey a sound rendition of a printed score, MIDI may filter out some of these refinements.

Sample evaluation (by objects) of MIDI accuracy

This sample shows unedited notation generated from MIDI input for the Mozart piano example (Cakewalk was the program used). A total of 46 errors was found in these first five bars. The C#s were rendered as Dbs. MIDI was very confused by the arpeggio and grace notes. It omitted slurs and staccatos (for which it makes no explicit accommodation), but it also omitted the meter and key signatures (these can be specified as meta-data but do not constitute capturable events). 

The beaming only partially correct. One spurious note was produced.

Arbitrary Conventions of Notation

Notation is full of arbitrary graphical conventions. There is no way to assure their accurate rendering from MIDI data. In most notation programs, whether the data was captured from MIDI or entered by another means, it is usually necessary to hand-edit occurrences of most of these situations. Occasionally, software enhancements facilitate correct placements and alignments. Because the notation is arbitrary, however, the software developer must added many additional capabilities to cover a broad range of such circumstances. This results in a higher cost to the user of learning elaborate pathways through the software.
The examples used here are particular to classical music of two hundred years ago, but problems in the same general classes occur in a wide range of other repertories. Only the details vary.
